    June  2018, 15(3): 765-773. doi: 10.3934/mbe.2018034

## Analyzing the causes of alpine meadow degradation and the efficiency of restoration strategies through a mathematical modelling exercise

 1 Department of Applied Mathematics, Yuncheng University, Yuncheng, Shanxi 044000, China 2 Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB E3B 5A3, Canada 3 North-West Plateau Institute of Biology, the Chinese Academy of Sciences, Key Laboratory of Ecology Restoration in Cold Region in Qinghai Province, Xining, Qinghai 810001, China

* Corresponding author

Received  May 20, 2017 Revised  September 11, 2017 Published  December 2017

As an important ecosystem, alpine meadow in China has been degraded severely over the past few decades. In order to restore degraded alpine meadows efficiently, the underlying causes of alpine meadow degradation should be identified and the efficiency of restoration strategies should be evaluated. For this purpose, a mathematical modeling exercise is carried out in this paper. Our mathematical analysis shows that the increasing of raptor mortality and the decreasing of livestock mortality (or the increasing of the rate at which livestock increases by consuming forage grass) are the major causes of alpine meadow degradation. We find that controlling the amount of livestock according to the grass yield or ecological migration, together with protecting raptor, is an effective strategy to restore degraded alpine meadows; while meliorating vegetation and controlling rodent population with rodenticide are conducive to restoring degraded alpine meadows. Our analysis also suggests that providing supplementary food to livestock and building greenhouse shelters to protect livestock in winter may contribute to alpine meadow degradation.

Citation: Hanwu Liu, Lin Wang, Fengqin Zhang, Qiuying Li, Huakun Zhou. Analyzing the causes of alpine meadow degradation and the efficiency of restoration strategies through a mathematical modelling exercise. Mathematical Biosciences & Engineering, 2018, 15 (3) : 765-773. doi: 10.3934/mbe.2018034
##### References:
  The Grassland Monitoring Report of China, 2015, Ministry of Agriculture of the People's Republic of China, 2016. Google Scholar  W. Fu, J. Zhao and G. Du, Study on sustainable development of alpine grazing ecosystem on Qinghai-Tibetan Plateau, Grassl. Turf, 33 (2013), 84-88.   Google Scholar  R. Long, Functions of ecosystem in the Tibetan grassland, Sci. Technol. Rev., 25 (2007), 26-28.   Google Scholar  L. Wen, S. Dong, Y. Li, X. Li, J. Shi, Y. Wang, D. Liu and Y. Ma, Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan plateau, China, Plos One, 8 (2013), e58432. doi: 10.1371/journal.pone.0058432. Google Scholar  Y. Lan, The degradation problem and strategy of alpine meadow in Qingzang Plateau, Qinghai Prataculture, 3 (2004), 27-30.   Google Scholar  T. Akiyama and K. Kawamura, Grassland degradation in China: Methods of monitoring, management and restoration, Grassl. Sci., 53 (2007), 1-17.  doi: 10.1111/j.1744-697X.2007.00073.x. Google Scholar  Y. Lan, Some important problems of ecological restoration of "San jiang yuan" area in Qinghai province, Territ. Nat. Resour. Study, 3 (2005), 51-52.   Google Scholar  X. Wang and X. Fu, Sustainable management of alpine meadows on the Tibetan plateau: Problems overlooked and suggestions for change, AMBIO: J. Hum. Environ., 33 (2004), 169-171.   Google Scholar  H. Zhou, X. Zhao, Y. Tang, S. Gu and L. Zhou, Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers}, China, Grassl. Sci., 51 (2005), 191-203.  doi: 10.1111/j.1744-697X.2005.00028.x. Google Scholar  R. Harris, Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes, J. Arid Environ., 74 (2010), 1-12.  doi: 10.1016/j.jaridenv.2009.06.014. Google Scholar  Q. Chen, Grassland deterioration in the source region of the Yangtze-Yellow rivers and integrated control of the ecological environment, Acta Prataculturae Sin., 16 (2007), 10-15.   Google Scholar  W. Li, W. Cao, J. Wang, X. Li, C. Xu and S. Shi, Effects of grazing regime on vegetation structure, productivity, soil quality, carbon and nitrogen storage of alpine meadow on the Qinghai-Tibetan Plateau, Ecol. Eng., 98 (2017), 123-133.  doi: 10.1016/j.ecoleng.2016.10.026. Google Scholar  J. Luo, J. Zhou, W. Zhao, L. Dong and J. Zheng, Effect of fences on functional groups and stability of the alpine meadow plant community in the Qinghai-Tibet Plateau, Pratacultural Sci., 34 (2017), 565-574.   Google Scholar  Y. Chang, B. Zheng, L. Guo and X. Cai, Theoretical analysis and multi-agent simulation of the ecosystem in Tibet, in Sixth International Conference on Natural Computation 7 (eds. S. Yue, H. Wei, L. Wang and Y. Song), IEEE, (2010), 3656–3659. doi: 10.1109/ICNC.2010.5584047. Google Scholar  X. Liao, Theory, Methods and Application of Stability, Huazhong University of Science and Technology Press, Wuhan, 1999. Google Scholar

show all references

##### References:
  The Grassland Monitoring Report of China, 2015, Ministry of Agriculture of the People's Republic of China, 2016. Google Scholar  W. Fu, J. Zhao and G. Du, Study on sustainable development of alpine grazing ecosystem on Qinghai-Tibetan Plateau, Grassl. Turf, 33 (2013), 84-88.   Google Scholar  R. Long, Functions of ecosystem in the Tibetan grassland, Sci. Technol. Rev., 25 (2007), 26-28.   Google Scholar  L. Wen, S. Dong, Y. Li, X. Li, J. Shi, Y. Wang, D. Liu and Y. Ma, Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan plateau, China, Plos One, 8 (2013), e58432. doi: 10.1371/journal.pone.0058432. Google Scholar  Y. Lan, The degradation problem and strategy of alpine meadow in Qingzang Plateau, Qinghai Prataculture, 3 (2004), 27-30.   Google Scholar  T. Akiyama and K. Kawamura, Grassland degradation in China: Methods of monitoring, management and restoration, Grassl. Sci., 53 (2007), 1-17.  doi: 10.1111/j.1744-697X.2007.00073.x. Google Scholar  Y. Lan, Some important problems of ecological restoration of "San jiang yuan" area in Qinghai province, Territ. Nat. Resour. Study, 3 (2005), 51-52.   Google Scholar  X. Wang and X. Fu, Sustainable management of alpine meadows on the Tibetan plateau: Problems overlooked and suggestions for change, AMBIO: J. Hum. Environ., 33 (2004), 169-171.   Google Scholar  H. Zhou, X. Zhao, Y. Tang, S. Gu and L. Zhou, Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers}, China, Grassl. Sci., 51 (2005), 191-203.  doi: 10.1111/j.1744-697X.2005.00028.x. Google Scholar  R. Harris, Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes, J. Arid Environ., 74 (2010), 1-12.  doi: 10.1016/j.jaridenv.2009.06.014. Google Scholar  Q. Chen, Grassland deterioration in the source region of the Yangtze-Yellow rivers and integrated control of the ecological environment, Acta Prataculturae Sin., 16 (2007), 10-15.   Google Scholar  W. Li, W. Cao, J. Wang, X. Li, C. Xu and S. Shi, Effects of grazing regime on vegetation structure, productivity, soil quality, carbon and nitrogen storage of alpine meadow on the Qinghai-Tibetan Plateau, Ecol. Eng., 98 (2017), 123-133.  doi: 10.1016/j.ecoleng.2016.10.026. Google Scholar  J. Luo, J. Zhou, W. Zhao, L. Dong and J. Zheng, Effect of fences on functional groups and stability of the alpine meadow plant community in the Qinghai-Tibet Plateau, Pratacultural Sci., 34 (2017), 565-574.   Google Scholar  Y. Chang, B. Zheng, L. Guo and X. Cai, Theoretical analysis and multi-agent simulation of the ecosystem in Tibet, in Sixth International Conference on Natural Computation 7 (eds. S. Yue, H. Wei, L. Wang and Y. Song), IEEE, (2010), 3656–3659. doi: 10.1109/ICNC.2010.5584047. Google Scholar  X. Liao, Theory, Methods and Application of Stability, Huazhong University of Science and Technology Press, Wuhan, 1999. Google Scholar Bifurcation diagrams of Model (2) showing the globally stable equilibria only. Left: $C< \theta K$; Middle: $\theta K<C<K$; Right: $C>K$.
Variation of coordinates $x^{*}, y^{*}, z^{*}, u^{*}$ of $E_{5}$ and values of $A$, $\theta$ when one of the parameters $d_{1}, r, K, d_{3}, d_{4}, q$ increases (all other parameters are fixed).
 Parameter $d_{1}$ $r$ $K$ $d_{3}$ $d_{4}$ $q$ $x^{*}$ $-$ $-$ $-$ $\nearrow$ $-$ $-$ $y^{*}$ $-$ $-$ $-$ $-$ $\nearrow$ $\searrow$ $z^{*}$ $\searrow$ $-$ $-$ $-$ $\nearrow$ $\searrow$ $u^{*}$ $-$ $\nearrow$ $\nearrow$ $\searrow$ $\searrow$ $\nearrow$ $A$ $\nearrow$ $-$ $-$ $-$ $-$ $-$ $\theta$ $-$ $\nearrow$ $-$ $\searrow$ $-$ $-$
 Parameter $d_{1}$ $r$ $K$ $d_{3}$ $d_{4}$ $q$ $x^{*}$ $-$ $-$ $-$ $\nearrow$ $-$ $-$ $y^{*}$ $-$ $-$ $-$ $-$ $\nearrow$ $\searrow$ $z^{*}$ $\searrow$ $-$ $-$ $-$ $\nearrow$ $\searrow$ $u^{*}$ $-$ $\nearrow$ $\nearrow$ $\searrow$ $\searrow$ $\nearrow$ $A$ $\nearrow$ $-$ $-$ $-$ $-$ $-$ $\theta$ $-$ $\nearrow$ $-$ $\searrow$ $-$ $-$
  Juan Pablo Aparicio, Carlos Castillo-Chávez. Mathematical modelling of tuberculosis epidemics. Mathematical Biosciences & Engineering, 2009, 6 (2) : 209-237. doi: 10.3934/mbe.2009.6.209  Sanyi Tang, Lansun Chen. Modelling and analysis of integrated pest management strategy. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 759-768. doi: 10.3934/dcdsb.2004.4.759  Geoffrey Beck, Sebastien Imperiale, Patrick Joly. Mathematical modelling of multi conductor cables. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 521-546. doi: 10.3934/dcdss.2015.8.521  Nirav Dalal, David Greenhalgh, Xuerong Mao. Mathematical modelling of internal HIV dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 305-321. doi: 10.3934/dcdsb.2009.12.305  Oliver Penrose, John W. Cahn. On the mathematical modelling of cellular (discontinuous) precipitation. Discrete & Continuous Dynamical Systems, 2017, 37 (2) : 963-982. doi: 10.3934/dcds.2017040  Liumei Wu, Baojun Song, Wen Du, Jie Lou. Mathematical modelling and control of echinococcus in Qinghai province, China. Mathematical Biosciences & Engineering, 2013, 10 (2) : 425-444. doi: 10.3934/mbe.2013.10.425  Roderick Melnik, B. Lassen, L. C Lew Yan Voon, M. Willatzen, C. Galeriu. Accounting for nonlinearities in mathematical modelling of quantum dot molecules. Conference Publications, 2005, 2005 (Special) : 642-651. doi: 10.3934/proc.2005.2005.642  Luis L. Bonilla, Vincenzo Capasso, Mariano Alvaro, Manuel Carretero, Filippo Terragni. On the mathematical modelling of tumor-induced angiogenesis. Mathematical Biosciences & Engineering, 2017, 14 (1) : 45-66. doi: 10.3934/mbe.2017004  M.A.J Chaplain, G. Lolas. Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Networks & Heterogeneous Media, 2006, 1 (3) : 399-439. doi: 10.3934/nhm.2006.1.399  Luigi Barletti, Giovanni Nastasi, Claudia Negulescu, Vittorio Romano. Mathematical modelling of charge transport in graphene heterojunctions. Kinetic & Related Models, 2021, 14 (3) : 407-427. doi: 10.3934/krm.2021010  Christos V. Nikolopoulos. Mathematical modelling of a mushy region formation during sulphation of calcium carbonate. Networks & Heterogeneous Media, 2014, 9 (4) : 635-654. doi: 10.3934/nhm.2014.9.635  Alexandre Cornet. Mathematical modelling of cardiac pulse wave reflections due to arterial irregularities. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1055-1076. doi: 10.3934/mbe.2018047  José Antonio Carrillo, Martin Parisot, Zuzanna Szymańska. Mathematical modelling of collagen fibres rearrangement during the tendon healing process. Kinetic & Related Models, 2021, 14 (2) : 283-301. doi: 10.3934/krm.2021005  Jinyan Wang, Yanni Xiao, Robert A. Cheke. Modelling the effects of contaminated environments in mainland China on seasonal HFMD infections and the potential benefit of a pulse vaccination strategy. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5849-5870. doi: 10.3934/dcdsb.2019109  Angelo Antoci, Marcello Galeotti, Mauro Sodini. Environmental degradation and indeterminacy of equilibrium selection. Discrete & Continuous Dynamical Systems - B, 2021, 26 (11) : 5755-5767. doi: 10.3934/dcdsb.2021179  Alexander S. Bratus, Svetlana Yu. Kovalenko, Elena Fimmel. On viable therapy strategy for a mathematical spatial cancer model describing the dynamics of malignant and healthy cells. Mathematical Biosciences & Engineering, 2015, 12 (1) : 163-183. doi: 10.3934/mbe.2015.12.163  Shu Liao, Jin Wang. Stability analysis and application of a mathematical cholera model. Mathematical Biosciences & Engineering, 2011, 8 (3) : 733-752. doi: 10.3934/mbe.2011.8.733  Adélia Sequeira, Rafael F. Santos, Tomáš Bodnár. Blood coagulation dynamics: mathematical modeling and stability results. Mathematical Biosciences & Engineering, 2011, 8 (2) : 425-443. doi: 10.3934/mbe.2011.8.425  Abdul M. Kamareddine, Roger L. Hughes. Towards a mathematical model for stability in pedestrian flows. Networks & Heterogeneous Media, 2011, 6 (3) : 465-483. doi: 10.3934/nhm.2011.6.465  Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3387-3399. doi: 10.3934/dcdss.2021017

2018 Impact Factor: 1.313