[1]
|
U. Asher, J. Christiansen and R. D. Russell, Collocation software for boundary-value ODEs, ACM Transactions on Mathematical Software (TOMS), 7 (1981), 209-222.
doi: 10.1145/355945.355950.
|
[2]
|
U. Asher, R. Mattheij and R. D. Russell,
Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, SIAM, 1995.
doi: 10.1137/1.9781611971231.
|
[3]
|
G. Bader and U. Asher, A new basis implementation for a mixed order boundary value ODE solver, SIAM Journal on Scientific and Statistical Computing, 8 (1987), 483-500.
doi: 10.1137/0908047.
|
[4]
|
M. Basso, R. Genesio and A. Tesi, A frequency method for predicting limit cycle bifurcations, Nonlinear Dynamics, 13 (1997), 339-360.
doi: 10.1023/A:1008298205786.
|
[5]
|
F. Bonani and M. Gilli, Analysis of stability and bifurcations of limit cycles in Chua's circuit through the harmonic-balance approach, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 46 (1999), 881-890.
doi: 10.1109/81.780370.
|
[6]
|
T. H. Bullock, M. V. L. Bennett, D. Johnston, R. Josephson, E. Marder and R. D. Fields, The neuron doctrine, Redux, Science, 310 (1999), 791-793,2005.
|
[7]
|
T. Chan and H. B. Keller, Arc-length continuation and multigrid techniques for nonlinear elliptic eigenvalue problems, SIAM Journal on Scientific and Statistical Computing, 3 (1982), 173-194.
doi: 10.1137/0903012.
|
[8]
|
E. Doedel, H. B. Keller and J. P. Kernevez, Numerical analysis and control of bifurcation problems (I): Bifurcation in finite dimensions, International journal of bifurcation and chaos, 1 (1991), 493-520.
doi: 10.1142/S0218127491000397.
|
[9]
|
S. Doi, S. Nabetani and S. Kumagai, Complex nonlinear dynamics of the Hodgkin-Huxley equations induced by time scale changes, Biological cybernetics, 85 (2001), 51-64.
doi: 10.1007/PL00007996.
|
[10]
|
M. Farkas,
Periodic Motions, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4757-4211-4.
|
[11]
|
M. Glickstein, Golgi and Cajal: The neuron doctrine and the 100th anniversary of the 1906 Nobel Prize, Current Biology, 16 (2006), R147-R151.
doi: 10.1016/j.cub.2006.02.053.
|
[12]
|
D. Gottlieb and S. Orszag,
Numerical Analysis of Spectral Methods: Theory and Applications, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1977.
|
[13]
|
J. Guckenheimer and R. A. Oliva, Chaos in the Hodgkin-Huxley Model, SIAM Journal on Applied Dynamical Systems, 1 (2002), 105-114.
doi: 10.1137/S1111111101394040.
|
[14]
|
J. Guckenheimer and J. S. Labouriau, Bifurcation of the Hodgkin and Huxley equations: A new twist, Bulletin of Mathematical Biology, 55 (1993), 937-952.
|
[15]
|
B. Hassard, Bifurcation of periodic solutions of the Hodgkin-Huxley model for the squid giant axon, Journal of Theoretical Biology, 71 (1978), 401-420.
doi: 10.1016/0022-5193(78)90168-6.
|
[16]
|
J. S. Hestheaven, S. Gottlieb and D. Gottlieb,
Spectral Methods for Time-Dependent Problems, Cambridge University Press, 2007.
doi: 10.1017/CBO9780511618352.
|
[17]
|
A. L. Hodgkin, The local electric changes associated with repetitive action in a non-medullated axon, The Journal of physiology, 107 (1948), 165-181.
doi: 10.1113/jphysiol.1948.sp004260.
|
[18]
|
A. L. Hodgkin and A. F. Huxley, Propagation of electrical signals along giant nerve fibres, Proceedings of the Royal Society of London. Series B, Biological Sciences, 140 (1952), 177-183.
doi: 10.1098/rspb.1952.0054.
|
[19]
|
E. M. Izhikevich,
Dynamical Systems in Neuroscience, MIT press, 2007.
|
[20]
|
S. Karkar, B. Cochelin and C. Vergez, A comparative study of the harmonic balance method and the orthogonal collocation method on stiff nonlinear systems, Journal of Sound and Vibration, 333 (2004), 2554-2567.
|
[21]
|
J. P. Keener and J. Sneyd,
Mathematical Physiology, Springer, 1998.
|
[22]
|
J. Kierzenka and L. F. Shampine, A BVP solver based on residual control and the Matlab PSE, ACM Transactions on Mathematical Software (TOMS), 27 (2001), 299-316.
doi: 10.1145/502800.502801.
|
[23]
|
K. S. Kundert, J. K. White and A. Sangiovanni-Vicentelli,
Steady-state Methods for Simulating Analog and Microwave Circuits, Kluwer Academic Publishers Boston, 1990.
doi: 10.1007/978-1-4757-2081-5.
|
[24]
|
Y. A. Kuznetsov,
Elements of Applied Bifurcation Theory, Springer, 1998.
|
[25]
|
V. Lanza, M. Bonnin and M. Gilli, On the application of the describing function technique to the bifurcation analysis of nonlinear systems, IEEE, Trans. Circuits Systems II Express Briefs, 54 (2007), 343-347.
doi: 10.1109/TCSII.2006.890406.
|
[26]
|
V. Lanza, L. Ponta, M. Bonnin and F. Corinto, Multiple attractors and bifurcations in hard oscillators driven by constant inputs, International Journal of Bifurcation and Chaos, 22 (2012), 1250267, 16pp.
doi: 10.1142/S0218127412502677.
|
[27]
|
A. I. Mees,
Dynamics of Feedback Systems, Wiley Ltd., Chirchester, 1981.
|
[28]
|
R. E. Mickens,
Truly Nonlinear Oscillations: Harmonic Balance, Parameter Expansions, Iteration, and Averaging Methods, World Scientific, 2010.
doi: 10.1142/9789814291668.
|
[29]
|
N. Minorsky,
Nonlinear Oscillations, Krieger, Huntington, New York, 1974.
|
[30]
|
C. Piccardi, Bifurcation analysis via harmonic balance in periodic systems with feedback structure, International Journal of Control, 62 (1995), 1507-1515.
doi: 10.1080/00207179508921611.
|
[31]
|
S. Ramon and Y. Cajal,
Textura del Sistema Nervioso del Hombre y de los Vertebrados, Imprenta y Librería de Nicolás Moya, Madrid, 1899.
|
[32]
|
J. Rinzel and R. N. Miller, Numerical calculation of stable and unstable periodic solutions to the Hodgkin-Huxley equations, Mathematical Biosciences, 49 (1980), 27-59.
doi: 10.1016/0025-5564(80)90109-1.
|
[33]
|
A. Scott,
Neuroscience: A mathematical Primer, Springer, 2002.
|
[34]
|
L. F. Shampine, J. Kierzenka and M. W. Reichelt, Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c, Tutorial notes, 49 (2000), 437-448.
|
[35]
|
H. C. Tuckwell,
Introduction to Theoretical Neurobiology: Volume 1, Linear Cable Theory and Dendritic Structure, Cambridge University Press, 1988.
|
[36]
|
M. Urabe, Galerkin's procedure for nonlinear periodic systems, Archive for Rational Mechanics and Analysis, 20 (1965), 120-152.
doi: 10.1007/BF00284614.
|
[37]
|
X. Wang and J. Rinzel, Oscillatory and bursting properties of neurons, in The handbook of
brain theory and neural networks, MIT Press, (1998), 686–691.
|
[38]
|
A. Zygmund,
Trigonometric Series, Cambridge University Press, 2002.
|