August  2018, 15(4): 827-839. doi: 10.3934/mbe.2018037

Closed-loop control of tumor growth by means of anti-angiogenic administration

1. 

Università Campus Bio-medico di Roma, Roma, Via Álvaro del Portillo 21, 00128, Italy

2. 

Istituto di Analisi dei Sistemi ed Informatica A. Ruberti, Consiglio Nazionale delle Ricerche, Roma, Via dei Taurini 19, 00185, Italy

3. 

Dipartimento di Ingegneria e scienze dell'informazione e matematica, Università dell'Aquila, L'Aquila, Via Vetoio, 67100, Italy

4. 

Istituto di Analisi dei Sistemi ed Informatica A. Ruberti, Consiglio Nazionale delle Ricerche, Roma, Via dei Taurini 19, 00185, Italy

* Corresponding author: Valerio Cusimano

The authors contributed equally to the research and are listed in alphabetical order

Received  February 21, 2017 Accepted  December 20, 2017 Published  March 2018

A tumor growth model accounting for angiogenic stimulation and inhibition is here considered, and a closed-loop control law is presented with the aim of tumor volume reduction by means of anti-angiogenic administration. To this end the output-feedback linearization theory is exploited, with the feedback designed on the basis of a state observer for nonlinear systems. Measurements are supposed to be acquired at discrete sampling times, and a novel theoretical development in the area of time-delay systems is applied in order to derive a continuous-time observer in spite of the presence of sampled measurements. The overall control scheme allows to set independently the control and the observer parameters thanks to the structural properties of the tumor growth model. Simulations are carried out in order to mimic a real experimental framework on mice. These results seem extremely promising: they provide very good performances according to the measurements sampling interval suggested by the experimental literature, and show a noticeable level of robustness against the observer initial estimate, as well as against the uncertainties affecting the model parameters.

Citation: Filippo Cacace, Valerio Cusimano, Alfredo Germani, Pasquale Palumbo, Federico Papa. Closed-loop control of tumor growth by means of anti-angiogenic administration. Mathematical Biosciences & Engineering, 2018, 15 (4) : 827-839. doi: 10.3934/mbe.2018037
References:
[1]

W. ArapR. Pasqualini and E. Ruoslahti, Chemotherapy targeted to tumor vasculature, Current Opinion in Oncology, 10 (1998), 560-565.  doi: 10.1097/00001622-199811000-00014.  Google Scholar

[2]

F. Cacace, A. Germani and C. Manes, State estimation and control of nonlinear systems with large and variable measurement delays, Recent Results on Nonlinear Delay Control Systems, Springer International Publishing, 4 (2016), 95–112.  Google Scholar

[3]

F. CacaceA. Germani and C. Manes, A chain observer for nonlinear systems with multiple time-varying measurement delays, SIAM Journal Control and Optimization, 52 (2014), 1862-1885.  doi: 10.1137/120876472.  Google Scholar

[4]

G. CiccarellaM. Dalla Mora and A. Germani, A Luemberger-like observer for nonlinear systems, International Journal of Control, 57 (1993), 537-556.  doi: 10.1080/00207179308934406.  Google Scholar

[5]

V. Cusimano, P. Palumbo and F. Papa, Closed-loop control of tumor growth by means of antiangiogenic administration, 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, 2015,7789–7794. doi: 10.1109/CDC.2015.7403451.  Google Scholar

[6]

M. Dalla MoraA. Germani and C. Manes, Design of state observers from a drift-observability property, IEEE Transactions on Automatic Control, 45 (2000), 1536-1540.  doi: 10.1109/9.871767.  Google Scholar

[7]

J. Denekamp, Vascular attack as a therapeutic strategy for cancer, Cancer and Metastasis Reviews, 9 (1990), 267-282.  doi: 10.1007/BF00046365.  Google Scholar

[8]

A. D'Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: Analysis and extensions of the model by hahnfeldt et al. (1999), Mathematical Biosciences, 191 (2004), 159-184.  doi: 10.1016/j.mbs.2004.06.003.  Google Scholar

[9]

A. D'Onofrio and A. Gandolfi, Chemotherapy of vascularised tumours: Role of vessel density and the effect of vascular "Pruning", Journal of Theoretical Biology, 264 (2010), 253-265.  doi: 10.1016/j.jtbi.2010.01.023.  Google Scholar

[10]

A. D'OnofrioU. LedzewiczH. Maurer and H. Schattler, On optimal delivery of combination therapy for tumors, Mathematical Biosciences, 222 (2009), 13-26.  doi: 10.1016/j.mbs.2009.08.004.  Google Scholar

[11]

A. ErgunK. Camphausen and L. M. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors, Bulletin of Mathematical Biology, 65 (2003), 407-424.  doi: 10.1016/S0092-8240(03)00006-5.  Google Scholar

[12]

J. Folkman, P. Hahnfeldt and L. Hlatky, The logic of anti-angiogenic gene therapy, The Development of Gene Therapy, Cold Sping Harbor, New York, 1998, 1–17. Google Scholar

[13]

J. Folkman, Anti-angiogenesis: New concept for therapy of solid tumors, Annals of Surgery, 175 (1972), 409-416.  doi: 10.1097/00000658-197203000-00014.  Google Scholar

[14]

P. HahnfeldtD. PanigrahyJ. Folkman and L. Hlatky, Tumor Development under Angiogenic Signaling: A Dynamical Theory of Tumor Growth, Treatment Response, and Postvascular Dormancy, Cancer Research, 59 (1999), 4770-4775.   Google Scholar

[15]

A. Isidori, Nonlinear Control Systems, Springer, London, 1995. Google Scholar

[16]

R. S. Kerbel, Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents, BioEssays, 13 (1991), 31-36.  doi: 10.1002/bies.950130106.  Google Scholar

[17]

R. S. Kerbel, A cancer therapy resistant to resistance, Nature, 390 (1997), 335-336.  doi: 10.1038/36978.  Google Scholar

[18]

R. S. KerbelG. KlementK. I. Pritchard and B. Kamen, Continuous low-dose anti-angiogenic/metronomic chemotherapy: From the research laboratory into the oncology clinic, Annals of Oncology, 13 (2002), 12-15.  doi: 10.1093/annonc/mdf093.  Google Scholar

[19]

K. S. Kerbel and B. A. Kamen, The anti-angiogenic basis of metronomic chemotherapy, Nature Reviews Cancer, 4 (2004), 423-436.  doi: 10.1038/nrc1369.  Google Scholar

[20]

M. Klagsbrun and S. Soker, VEiGF/VPF: The angiogenesis factor found?, Current Biology, 3 (1993), 699-702.   Google Scholar

[21]

J. KlamkaH. Maurer and A. Swierniak, Local controllability and optimal control for a model of combined anticancer therapy with control delays, Mathematical Biosciences and Engineering, 14 (2017), 195-216.   Google Scholar

[22]

L. KovácsA. SzelesJ. SápiD. A. DrexlerI. RudasI. Harmati and Z. Sápi, Model-based angiogenic inhibition of tumor growth using modern robust control method, Computer Methods and Programs in Biomedicine, 114 (2014), e98-e110.   Google Scholar

[23]

U. Ledzewicz and H. Schattler, Anti-angiogenic therapy incancer treatment as an optimal control problem, SIAM Journal on Control and Optimization, 46 (2007), 1052-1079.  doi: 10.1137/060665294.  Google Scholar

[24]

U. LedzewiczJ. MarriottH. Maurer and H. Schattler, Realizable protocols for optimal administration of drugs in mathematical models for anti-angiogenic treatment, Mathematical Medicine and Biology, 27 (2010), 157-179.  doi: 10.1093/imammb/dqp012.  Google Scholar

[25]

Yu. MikheevV. Sobolev and E. Fridman, Asymptotic analysis of digital control systems, Automation and Remote Control, 49 (1988), 1175-1180.   Google Scholar

[26]

J. SápiD. A. DrexlerI. HarmatiZ. Sápi and L. Kovács, Qualitative analysis of tumor growth model under antiangiogenic therapy -choosing the effective operating point and design parameters for controller design, Optimal Control Applications and Methods, 37 (2016), 848-866.  doi: 10.1002/oca.2196.  Google Scholar

show all references

References:
[1]

W. ArapR. Pasqualini and E. Ruoslahti, Chemotherapy targeted to tumor vasculature, Current Opinion in Oncology, 10 (1998), 560-565.  doi: 10.1097/00001622-199811000-00014.  Google Scholar

[2]

F. Cacace, A. Germani and C. Manes, State estimation and control of nonlinear systems with large and variable measurement delays, Recent Results on Nonlinear Delay Control Systems, Springer International Publishing, 4 (2016), 95–112.  Google Scholar

[3]

F. CacaceA. Germani and C. Manes, A chain observer for nonlinear systems with multiple time-varying measurement delays, SIAM Journal Control and Optimization, 52 (2014), 1862-1885.  doi: 10.1137/120876472.  Google Scholar

[4]

G. CiccarellaM. Dalla Mora and A. Germani, A Luemberger-like observer for nonlinear systems, International Journal of Control, 57 (1993), 537-556.  doi: 10.1080/00207179308934406.  Google Scholar

[5]

V. Cusimano, P. Palumbo and F. Papa, Closed-loop control of tumor growth by means of antiangiogenic administration, 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, 2015,7789–7794. doi: 10.1109/CDC.2015.7403451.  Google Scholar

[6]

M. Dalla MoraA. Germani and C. Manes, Design of state observers from a drift-observability property, IEEE Transactions on Automatic Control, 45 (2000), 1536-1540.  doi: 10.1109/9.871767.  Google Scholar

[7]

J. Denekamp, Vascular attack as a therapeutic strategy for cancer, Cancer and Metastasis Reviews, 9 (1990), 267-282.  doi: 10.1007/BF00046365.  Google Scholar

[8]

A. D'Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: Analysis and extensions of the model by hahnfeldt et al. (1999), Mathematical Biosciences, 191 (2004), 159-184.  doi: 10.1016/j.mbs.2004.06.003.  Google Scholar

[9]

A. D'Onofrio and A. Gandolfi, Chemotherapy of vascularised tumours: Role of vessel density and the effect of vascular "Pruning", Journal of Theoretical Biology, 264 (2010), 253-265.  doi: 10.1016/j.jtbi.2010.01.023.  Google Scholar

[10]

A. D'OnofrioU. LedzewiczH. Maurer and H. Schattler, On optimal delivery of combination therapy for tumors, Mathematical Biosciences, 222 (2009), 13-26.  doi: 10.1016/j.mbs.2009.08.004.  Google Scholar

[11]

A. ErgunK. Camphausen and L. M. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors, Bulletin of Mathematical Biology, 65 (2003), 407-424.  doi: 10.1016/S0092-8240(03)00006-5.  Google Scholar

[12]

J. Folkman, P. Hahnfeldt and L. Hlatky, The logic of anti-angiogenic gene therapy, The Development of Gene Therapy, Cold Sping Harbor, New York, 1998, 1–17. Google Scholar

[13]

J. Folkman, Anti-angiogenesis: New concept for therapy of solid tumors, Annals of Surgery, 175 (1972), 409-416.  doi: 10.1097/00000658-197203000-00014.  Google Scholar

[14]

P. HahnfeldtD. PanigrahyJ. Folkman and L. Hlatky, Tumor Development under Angiogenic Signaling: A Dynamical Theory of Tumor Growth, Treatment Response, and Postvascular Dormancy, Cancer Research, 59 (1999), 4770-4775.   Google Scholar

[15]

A. Isidori, Nonlinear Control Systems, Springer, London, 1995. Google Scholar

[16]

R. S. Kerbel, Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents, BioEssays, 13 (1991), 31-36.  doi: 10.1002/bies.950130106.  Google Scholar

[17]

R. S. Kerbel, A cancer therapy resistant to resistance, Nature, 390 (1997), 335-336.  doi: 10.1038/36978.  Google Scholar

[18]

R. S. KerbelG. KlementK. I. Pritchard and B. Kamen, Continuous low-dose anti-angiogenic/metronomic chemotherapy: From the research laboratory into the oncology clinic, Annals of Oncology, 13 (2002), 12-15.  doi: 10.1093/annonc/mdf093.  Google Scholar

[19]

K. S. Kerbel and B. A. Kamen, The anti-angiogenic basis of metronomic chemotherapy, Nature Reviews Cancer, 4 (2004), 423-436.  doi: 10.1038/nrc1369.  Google Scholar

[20]

M. Klagsbrun and S. Soker, VEiGF/VPF: The angiogenesis factor found?, Current Biology, 3 (1993), 699-702.   Google Scholar

[21]

J. KlamkaH. Maurer and A. Swierniak, Local controllability and optimal control for a model of combined anticancer therapy with control delays, Mathematical Biosciences and Engineering, 14 (2017), 195-216.   Google Scholar

[22]

L. KovácsA. SzelesJ. SápiD. A. DrexlerI. RudasI. Harmati and Z. Sápi, Model-based angiogenic inhibition of tumor growth using modern robust control method, Computer Methods and Programs in Biomedicine, 114 (2014), e98-e110.   Google Scholar

[23]

U. Ledzewicz and H. Schattler, Anti-angiogenic therapy incancer treatment as an optimal control problem, SIAM Journal on Control and Optimization, 46 (2007), 1052-1079.  doi: 10.1137/060665294.  Google Scholar

[24]

U. LedzewiczJ. MarriottH. Maurer and H. Schattler, Realizable protocols for optimal administration of drugs in mathematical models for anti-angiogenic treatment, Mathematical Medicine and Biology, 27 (2010), 157-179.  doi: 10.1093/imammb/dqp012.  Google Scholar

[25]

Yu. MikheevV. Sobolev and E. Fridman, Asymptotic analysis of digital control systems, Automation and Remote Control, 49 (1988), 1175-1180.   Google Scholar

[26]

J. SápiD. A. DrexlerI. HarmatiZ. Sápi and L. Kovács, Qualitative analysis of tumor growth model under antiangiogenic therapy -choosing the effective operating point and design parameters for controller design, Optimal Control Applications and Methods, 37 (2016), 848-866.  doi: 10.1002/oca.2196.  Google Scholar

Figure 1.  Graphical comparison of the real and estimate state under the action of the closed loop control law
Figure 2.  Percentage of successes for the three criteria, in a population of 1000 mice treated with endostatin
Table 1.  Model parameters
$\lambda$
day$^{-1}$
$b$
day$^{-1}$
$d$
day$^{-1}$
$c$
day$^{-1}$
$\eta$
day$^{-1}$
0.1925.850.008730.661.7
$\lambda$
day$^{-1}$
$b$
day$^{-1}$
$d$
day$^{-1}$
$c$
day$^{-1}$
$\eta$
day$^{-1}$
0.1925.850.008730.661.7
[1]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[2]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[3]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[4]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[5]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[6]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[7]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[8]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[9]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[10]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[11]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[12]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[13]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[14]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[15]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[16]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[17]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[18]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[19]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[20]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (157)
  • HTML views (297)
  • Cited by (4)

[Back to Top]