August  2018, 15(4): 841-862. doi: 10.3934/mbe.2018038

Continuous and pulsed epidemiological models for onchocerciasis with implications for eradication strategy

1. 

Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588-0130, USA

2. 

Mathematics Department, Seattle University, 901 12th Ave, Seattle, WA 98122-1090, USA

3. 

Department of Mathematics, Indiana University of Pennsylvania, Indiana, PA 15705, USA

4. 

Department of Mathematics, New York City College of Technology -CUNY, Brooklyn, NY 11201, USA

* Corresponding author: Glenn Ledder

Received  March 2017 Accepted  January 03, 2018 Published  March 2018

Fund Project: This work was supported by NSF grant DMS 1239280.

Onchocerciasis is an endemic disease in parts of sub-Saharan Africa. Complex mathematical models are being used to assess the likely efficacy of efforts to eradicate the disease; however, their predictions have not always been borne out in practice. In this paper, we represent the immunological aspects of the disease with a single empirical parameter in order to reduce the model complexity. Asymptotic approximation allows us to reduce the vector-borne epidemiological model to a model of an infectious disease with nonlinear incidence. We then consider two versions, one with continuous treatment and a more realistic one where treatment occurs only at intervals. Thorough mathematical analysis of these models yields equilibrium solutions for the continuous case, periodic solutions for the pulsed case, and conditions for the existence of endemic disease equilibria in both cases, thereby leading to simple model criteria for eradication. The analytical results and numerical experiments show that the continuous treatment version is an excellent approximation for the pulsed version and that the current onchocerciasis eradication strategy is inadequate for regions where the incidence is highest and unacceptably slow even when the long-term behavior is the disease-free state.

Citation: Glenn Ledder, Donna Sylvester, Rachelle R. Bouchat, Johann A. Thiel. Continuous and pulsed epidemiological models for onchocerciasis with implications for eradication strategy. Mathematical Biosciences & Engineering, 2018, 15 (4) : 841-862. doi: 10.3934/mbe.2018038
References:
[1]

African programme for onchocerciasis control: Progress report, 2014-2015, Relevé Épidémiologique Hebdomadaire / Section D'hygiène Du Secrétariat De La Société Des Nations = Weekly Epidemiological Record / Health Section Of The Secretariat Of The League Of Nations, 90 (2015), 661–674. URL: http://www.who.int/iris/handle/10665/254534. Google Scholar

[2]

M. Basáñez and M. Boussinesq, Population biology of human onchocerciasis, Philosophical Transactions: Biological Sciences, 354 (1999), 809-826.  doi: 10.1098/rstb.1999.0433.  Google Scholar

[3]

L. E. CoffengW. A. StolkH. G. M. ZouréJ. L. Veerman and K. B. Agblewonu, African programme for onchocerciasis control 1995-2015: Model-estimated health impact and cost, PLoS Neglected Tropical Diseases, 7 (2013), e2032.  doi: 10.1371/journal.pntd.0002032.  Google Scholar

[4]

Y. DadzieM. Neira and D. Hopkins, Final report of the conference on the eradicability of onchocerciasis, Filaria Journal, 2 (2003), 22-134.  doi: 10.1186/1475-2883-2-2.  Google Scholar

[5]

J. B. Davies, Description of a computer model of forest onchocerciasis transmission and its application to field scenarios of vector control and chemotherapy, Ann Trop Med Parasitol, 87 (1992), 41–63, URL: https://www.ncbi.nlm.nih.gov/pubmed/8346991. doi: 10.1080/00034983.1993.11812738.  Google Scholar

[6]

K. Dietz, The population dynamics of onchocerciasis, Population Dynamics of Infectious Diseases (ed. R. M. Anderson), Chapman and Hall, (1982), 209–241. doi: 10.1007/978-1-4899-2901-3_7.  Google Scholar

[7]

H. W. Hethcote, The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.  doi: 10.1137/S0036144500371907.  Google Scholar

[8]

A. Hopkins and B. A. Boatin, Onchocerciasis, Water and Sanitation-Related Diseases and the Environment: Challenges, Interventions, and Preventive Measures (ed J.M.H. Selendy), John Wiley & Sons, Inc, (2011), 133-149.  doi: 10.1002/9781118148594.ch11.  Google Scholar

[9]

E. I. Jury, A simplified stability criterion for linear discrete systems, Proceedings of the IRE, 50 (1962), 1493-1500.  doi: 10.1109/JRPROC.1962.288193.  Google Scholar

[10]

M. N. KatabarwaA. EyambaP. NwaneP. EnyongS. YayaJ. BaldagaiT. K. MadiA. YougoudaG. O. Andze and F. O. Richards, Seventeen years of annual distribution of ivermectin has not interrupted onchocerciasis transmission in North Region, Cameroon, The American Journal Of Tropical Medicine And Hygiene [serial online], 85 (2011), 1041-1049.  doi: 10.4269/ajtmh.2011.11-0333.  Google Scholar

[11]

G. Ledder, Forest defoliation scenarios, Math Biosci. Eng., 4 (2007), 15-28.  doi: 10.3934/mbe.2007.4.15.  Google Scholar

[12]

G. Ledder, Mathematics for the Life Sciences: Calculus, Modeling, Probability, and Dynamical Systems, Springer-Verlag, 2013. doi: 10.1007/978-1-4614-7276-6.  Google Scholar

[13]

A. P. Plaisier, E. S. Alley, B. A. Boatin, G. J. van Oortmarssen and H. Remme, Irreversible effects of ivermectin on adult parasites in onchocerciasis patients in the Onchocerciasis Control Programme in West Africa, Journal of Infectious Disease, 172 (1995), 204–210, URL: https://academic.oup.com/jid/article-abstract/172/1/204/853322. doi: 10.1093/infdis/172.1.204.  Google Scholar

[14]

A. P. Plaisier, G. J. van Oortmarssen, J. D. F. Habbema, J. Remme and E. S. Alley ONCHOSIM: a model and computer simulation program for the transmission and control of onchocerciasis, Comput Methods Programs Biomed, 31 (1990), 43–56. URL: https://www.ncbi.nlm.nih.gov/pubmed/2311368. doi: 10.1016/0169-2607(90)90030-D.  Google Scholar

[15]

B. Ranganathan, Onchocerciasis: An overview, Amrita Journal of Medicine, 8 (2012), 1-9.   Google Scholar

[16]

J. Remme, O. Ba, K. Y. Dadzie and M. Karam, A force-of-infection model for onchocerciasis and its applications in the epidemiological evaluation of the Onchocerciasis Control Programme in the Volta River basin area, Bulletin of the World Health Organization, 64 (1986), 667–681, URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2490951/. Google Scholar

[17]

F. RichardsN. Rizzo and A. Domínguez, One hundred years after its discovery in Guatemala by Rodolfo Robles, Onchocerca volvulus transmission has been eliminated from the Central Endemic Zone, The American Journal Of Tropical Medicine And Hygiene [serial online], 93 (2015), 1295-1304.  doi: 10.4269/ajtmh.15-0364.  Google Scholar

[18]

W. A. StolkM. WalkerL. E. CoffengM. G. Basáñez and S. J. de Vlas, Required duration of mass ivermectin treatment for onchocerciasis elimination in Africa: a comparative modeling analysis, Parasites and Vectors, 8 (2015), 552-567.  doi: 10.1186/s13071-015-1159-9.  Google Scholar

[19]

H. C. TurnerW. WalkerT. S. Churcher and M. Basáñez, Modeling the impact of ivermectin on river blindness and its burden of morbidity and mortality in African Savannah: EpiOncho projections, Parasites and Vectors, 7 (2014), 241-255.  doi: 10.1186/1756-3305-7-241.  Google Scholar

[20]

F. WeldegebrealG. MedhinZ. Weldegebriel and M. Legesse, Knowledge, attitude and practice of community drug distributors' about onchocerciasis and community directed treatment with ivermectin in Quara district, North Western Ethiopia, BMC Research Notes, 9 (2016), 1-8.  doi: 10.1186/s13104-016-2010-x.  Google Scholar

show all references

References:
[1]

African programme for onchocerciasis control: Progress report, 2014-2015, Relevé Épidémiologique Hebdomadaire / Section D'hygiène Du Secrétariat De La Société Des Nations = Weekly Epidemiological Record / Health Section Of The Secretariat Of The League Of Nations, 90 (2015), 661–674. URL: http://www.who.int/iris/handle/10665/254534. Google Scholar

[2]

M. Basáñez and M. Boussinesq, Population biology of human onchocerciasis, Philosophical Transactions: Biological Sciences, 354 (1999), 809-826.  doi: 10.1098/rstb.1999.0433.  Google Scholar

[3]

L. E. CoffengW. A. StolkH. G. M. ZouréJ. L. Veerman and K. B. Agblewonu, African programme for onchocerciasis control 1995-2015: Model-estimated health impact and cost, PLoS Neglected Tropical Diseases, 7 (2013), e2032.  doi: 10.1371/journal.pntd.0002032.  Google Scholar

[4]

Y. DadzieM. Neira and D. Hopkins, Final report of the conference on the eradicability of onchocerciasis, Filaria Journal, 2 (2003), 22-134.  doi: 10.1186/1475-2883-2-2.  Google Scholar

[5]

J. B. Davies, Description of a computer model of forest onchocerciasis transmission and its application to field scenarios of vector control and chemotherapy, Ann Trop Med Parasitol, 87 (1992), 41–63, URL: https://www.ncbi.nlm.nih.gov/pubmed/8346991. doi: 10.1080/00034983.1993.11812738.  Google Scholar

[6]

K. Dietz, The population dynamics of onchocerciasis, Population Dynamics of Infectious Diseases (ed. R. M. Anderson), Chapman and Hall, (1982), 209–241. doi: 10.1007/978-1-4899-2901-3_7.  Google Scholar

[7]

H. W. Hethcote, The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.  doi: 10.1137/S0036144500371907.  Google Scholar

[8]

A. Hopkins and B. A. Boatin, Onchocerciasis, Water and Sanitation-Related Diseases and the Environment: Challenges, Interventions, and Preventive Measures (ed J.M.H. Selendy), John Wiley & Sons, Inc, (2011), 133-149.  doi: 10.1002/9781118148594.ch11.  Google Scholar

[9]

E. I. Jury, A simplified stability criterion for linear discrete systems, Proceedings of the IRE, 50 (1962), 1493-1500.  doi: 10.1109/JRPROC.1962.288193.  Google Scholar

[10]

M. N. KatabarwaA. EyambaP. NwaneP. EnyongS. YayaJ. BaldagaiT. K. MadiA. YougoudaG. O. Andze and F. O. Richards, Seventeen years of annual distribution of ivermectin has not interrupted onchocerciasis transmission in North Region, Cameroon, The American Journal Of Tropical Medicine And Hygiene [serial online], 85 (2011), 1041-1049.  doi: 10.4269/ajtmh.2011.11-0333.  Google Scholar

[11]

G. Ledder, Forest defoliation scenarios, Math Biosci. Eng., 4 (2007), 15-28.  doi: 10.3934/mbe.2007.4.15.  Google Scholar

[12]

G. Ledder, Mathematics for the Life Sciences: Calculus, Modeling, Probability, and Dynamical Systems, Springer-Verlag, 2013. doi: 10.1007/978-1-4614-7276-6.  Google Scholar

[13]

A. P. Plaisier, E. S. Alley, B. A. Boatin, G. J. van Oortmarssen and H. Remme, Irreversible effects of ivermectin on adult parasites in onchocerciasis patients in the Onchocerciasis Control Programme in West Africa, Journal of Infectious Disease, 172 (1995), 204–210, URL: https://academic.oup.com/jid/article-abstract/172/1/204/853322. doi: 10.1093/infdis/172.1.204.  Google Scholar

[14]

A. P. Plaisier, G. J. van Oortmarssen, J. D. F. Habbema, J. Remme and E. S. Alley ONCHOSIM: a model and computer simulation program for the transmission and control of onchocerciasis, Comput Methods Programs Biomed, 31 (1990), 43–56. URL: https://www.ncbi.nlm.nih.gov/pubmed/2311368. doi: 10.1016/0169-2607(90)90030-D.  Google Scholar

[15]

B. Ranganathan, Onchocerciasis: An overview, Amrita Journal of Medicine, 8 (2012), 1-9.   Google Scholar

[16]

J. Remme, O. Ba, K. Y. Dadzie and M. Karam, A force-of-infection model for onchocerciasis and its applications in the epidemiological evaluation of the Onchocerciasis Control Programme in the Volta River basin area, Bulletin of the World Health Organization, 64 (1986), 667–681, URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2490951/. Google Scholar

[17]

F. RichardsN. Rizzo and A. Domínguez, One hundred years after its discovery in Guatemala by Rodolfo Robles, Onchocerca volvulus transmission has been eliminated from the Central Endemic Zone, The American Journal Of Tropical Medicine And Hygiene [serial online], 93 (2015), 1295-1304.  doi: 10.4269/ajtmh.15-0364.  Google Scholar

[18]

W. A. StolkM. WalkerL. E. CoffengM. G. Basáñez and S. J. de Vlas, Required duration of mass ivermectin treatment for onchocerciasis elimination in Africa: a comparative modeling analysis, Parasites and Vectors, 8 (2015), 552-567.  doi: 10.1186/s13071-015-1159-9.  Google Scholar

[19]

H. C. TurnerW. WalkerT. S. Churcher and M. Basáñez, Modeling the impact of ivermectin on river blindness and its burden of morbidity and mortality in African Savannah: EpiOncho projections, Parasites and Vectors, 7 (2014), 241-255.  doi: 10.1186/1756-3305-7-241.  Google Scholar

[20]

F. WeldegebrealG. MedhinZ. Weldegebriel and M. Legesse, Knowledge, attitude and practice of community drug distributors' about onchocerciasis and community directed treatment with ivermectin in Quara district, North Western Ethiopia, BMC Research Notes, 9 (2016), 1-8.  doi: 10.1186/s13104-016-2010-x.  Google Scholar

Figure 1.  The O. volvulus life cycle. Microfilariae produced in the human host are transmitted to the black fly of the genus Simulium via a bite. Within the black fly, the larvae pass through larval stages L1-L3. At larval stage L3, they are transmitted to a human host via a bite, where they pass through the final larval stages L3-L5 and become adults [8]
Figure 2.  The SEIPMS-UV epidemiological model. Fly bites transfer the disease from infected flies ($V$) to susceptible humans ($S$) and from infective humans ($I$, $P$, and $M$) to uninfected flies ($U$), with the transfer from medicated humans ($M$) decreased by a factor $\nu$. Exposed humans ($E$) become infective, with the fraction $p$ counting as premedicated ($P$) while waiting for treatment and the remaining fraction $q = 1-p$ becoming unmedicated infectives ($I$). Premedicated humans become medicated when they receive treatment. All three infective classes can become susceptible by clearing all the adult worms. Birth and death rates for humans are equal, with all births into the susceptible class; similarly, birth and death rates for flies are equal with all births into the uninfected class
Figure 3.  Simulation of the introduction of a small population of human infectives into a previously unexposed population, showing $E/N$, $V/F$, $I/N$, and $S/N$ in Figure 3a, from bottom up, and $V/F$, $I/N$ in Figure 3b, from bottom up, using $a = 0.9$, $b = 3.0$, $\eta = 0.1$, $\epsilon = 0$, $p = 0$, with solid for $\delta = 0.01$ and dash-dot for the asymptotic simplification
Figure 4.  Periodic solutions for the exposed ($x$, dashed) and total infective ($y = h+i$, solid) classes, with treatment intervals of 2 years (top), 1 year (middle), and 6 months (bottom), using $a = 0.9$, $b = 3.5$, $\eta = 0.1$, $\epsilon = 0$, $\nu p = 0.6$
Figure 5.  Time average infective populations, with $a = 0.9$, $b = 3$, $\eta = 0.1$, $\epsilon = 0$, $\nu p = 0.6$. Humans: top 2; Flies: bottom 2; Pulsed: solid; Continuous: dashed
Figure 6.  Simulations of various treatment scenarios, with $a = 0.9$, $\eta = 0.1$, $\epsilon = 0$
[1]

Guo-Niu Han, Huan Xiong. Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29 (1) : 1841-1857. doi: 10.3934/era.2020094

[2]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[3]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[4]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[5]

The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013

[6]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[7]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[8]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[9]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[10]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[11]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[12]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[13]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[14]

Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151

[15]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[16]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[17]

Urszula Ledzewicz, Heinz Schättler. On the role of pharmacometrics in mathematical models for cancer treatments. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 483-499. doi: 10.3934/dcdsb.2020213

[18]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[19]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[20]

Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (125)
  • HTML views (259)
  • Cited by (1)

[Back to Top]