October  2018, 15(5): 1055-1076. doi: 10.3934/mbe.2018047

Mathematical modelling of cardiac pulse wave reflections due to arterial irregularities

1. 

Imperial College London, South Kensington Campus, London SW72AZ, United Kingdom

2. 

Ecole normale supérieure Paris-Saclay, 61 Avenue du Président Wilson, Cachan 94230, France

* Corresponding author: alexandre.cornet@ens-paris-saclay.fr

Received  December 24, 2016 Accepted  January 23, 2018 Published  May 2018

This research aims to model cardiac pulse wave reflections due to the presence of arterial irregularities such as bifurcations, stiff arteries, stenoses or aneurysms. When an arterial pressure wave encounters an irregularity, a backward reflected wave travels upstream in the artery and a forward wave is transmitted downstream. The same process occurs at each subsequent irregularity, leading to the generation of multiple waves. An iterative algorithm is developed and applied to pathological scenarios to predict the pressure waveform of the reflected wave due to the presence of successive arterial irregularities. For an isolated stenosis, analysing the reflected pressure waveform gives information on its severity. The presence of a bifurcation after a stenosis tends do diminish the amplitude of the reflected wave, as bifurcations' reflection coefficients are relatively small compared to the ones of stenoses or aneurysms. In the case of two stenoses in series, local extrema are observed in the reflected pressure waveform which appears to be a characteristic of stenoses in series along an individual artery. Finally, we model a progressive change in stiffness in the vessel's wall and observe that the less the gradient stiffness is important, the weaker is the reflected wave.

Citation: Alexandre Cornet. Mathematical modelling of cardiac pulse wave reflections due to arterial irregularities. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1055-1076. doi: 10.3934/mbe.2018047
References:
[1]

L. AugsburgerP. ReymonE. FonckZ. KulcarM. FarhatM. OhtaN. Stergiopulos and D. A. Rufenacht, Methodologies to assess blood flow in cerebral aneurysms: Current state of research and perspectives, Journal of Neuroradiology, 36 (2009), 270-277.  doi: 10.1016/j.neurad.2009.03.001.  Google Scholar

[2]

I. Bakirtas and A. Antar, Effect of stenosis on solitary waves in arteries, International Journal of Engineering Science, 43 (2005), 730-743.  doi: 10.1016/j.ijengsci.2004.12.014.  Google Scholar

[3]

W.-S. DuanY.-R. ShiX.-R HongK.-P. Lu and J.-B. Zhao, The reflection of soliton at multi-arterial bifurcations and the effect of the arterial inhomogeneity, Physics Letters A, 295 (2002), 133-138.  doi: 10.1016/S0375-9601(02)00078-6.  Google Scholar

[4]

L. FormaggiaF. NobileA. Quarteroni and A. Veneziani, Multiscale modelling of the circulatory system: A preliminary analysis, Comput. Visual. Sci., 2 (1999), 75-83.  doi: 10.1007/s007910050030.  Google Scholar

[5]

L. FormaggiaF. NobileA. Quarteroni and J.-F. Gerbeau, On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels, Comp. Methods Appl. Mech. Engng., 191 (2001), 561-582.  doi: 10.1016/S0045-7825(01)00302-4.  Google Scholar

[6]

K. Hayashi, K. Handa, S. Nagasawa and A. Okumura, Stiffness and elastic behaviour of human intracranial and extracranial arteries, J. Biomech., 13 (1980), 175-179,181-184. doi: 10.1016/0021-9290(80)90191-8.  Google Scholar

[7]

G. L. LangewoutersK. H. Wesseling and W. J. A. Goedhard, The static properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model, J. Biomech., 17 (1984), 425-435.  doi: 10.1016/0021-9290(84)90034-4.  Google Scholar

[8]

C. A. D. LeguyE. M. H. BosboomH. GelderblomA. P. G. Hoeks and F. N. Van de Vosse, Estimation of distributed arterial mechanical properties using a wave propagation model in a reverse way, Medical Engineering & Physics, 32 (2010), 957-967.  doi: 10.1016/j.medengphy.2010.06.010.  Google Scholar

[9]

K. S. MatthusJ. AlastrueyJ. PeiroA. W. KhirP. SegersR. P. VerdonckK. H. Parker and S. J. Sherwin, Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements, J. Biomechanics, 44 (2011), 2250-2258.  doi: 10.1016/j.jbiomech.2011.05.041.  Google Scholar

[10]

H. G. MoralesI. LarrabideA. J. GeersM. L. Aguilar and A. F. Frangi, Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms, J. Biomechanics, 46 (2013), 2158-2164.  doi: 10.1016/j.jbiomech.2013.06.034.  Google Scholar

[11]

W. W. Nichols, J. W. Petersen, S. J. Denardo and D. D. Christou Arterial stiffness, wave reflection amplitude and left ventricular afterload are increased in overweight individuals, Artery Research, 7 (2013), 222-229. doi: 10.1016/j.artres.2013.08.001.  Google Scholar

[12]

Z. Ovadia-BlechmanS. EinavU. ZaretskyD. Castel and E. Eldar, Characterization of arterial stenosis and elasticity by analysis of high-frequency pressure wave components, Computer in Biology and Medicine, 33 (2003), 375-393.  doi: 10.1016/S0010-4825(03)00004-0.  Google Scholar

[13]

C. S. Park and S. J. Payne, Nonlinear and viscous effects on wave propagation in an elastic axisymmetric vessel, J. of Fluids and Structures, 27 (2011), 134-144.  doi: 10.1016/j.jfluidstructs.2010.10.003.  Google Scholar

[14]

K. H. Parker, An introduction to wave intensity analysis, Medical & Biological Engineering & Computing, 47 (2009), 175-199.  doi: 10.1007/s11517-009-0439-y.  Google Scholar

[15]

T. J. Pedley, Nonlinear pulse wave reflection at an arterial stenosis, J. of Biomechanical Engineering, 105 (1983), 353-359.  doi: 10.1115/1.3138432.  Google Scholar

[16]

S. I. S. PintoE. DoutelJ. B. L. M. Campos and J. M. Miranda, Blood analog fluid flow in vessels with stenosis: Development of an Openfoam code to stimulate pulsatile flow and elasticity of the fluid, APCBEE Procedia, 7 (2013), 73-79.  doi: 10.1016/j.apcbee.2013.08.015.  Google Scholar

[17]

A. Quarteroni and L. Formaggia, Mathematical modelling and numerical simulation of the cardiovascular system, Handbook of Numerical Analysis, 12 (2004), 3-127.  doi: 10.1016/S1570-8659(03)12001-7.  Google Scholar

[18]

P. SegersJ. KipsB. TrachetA. SwillensS. VermeerschD. MahieuE. RietzschelM. D. Buyzere and L. V. Bortel, Limitations and pitfalls of non-invasive measurement of arterial pressure wave reflections and pulse wave velocity, Artery Research, 3 (2009), 79-88.  doi: 10.1016/j.artres.2009.02.006.  Google Scholar

[19]

D. Shahmirzadi and E. E. Konofagou, Quantification of arterial wall inhomogeneity size, distribution, and modulus contrast using FSI numerical pulse wave propagation, Artery Research, 8 (2014), 57-65.  doi: 10.1016/j.artres.2014.01.006.  Google Scholar

[20]

N. StergiopulosD. F. Young and T. R. Rogge, Computer simulation of arterial flow with applications to arterial and aortic stenoses, J. Biomechanics, 25 (1992), 1477-1488.  doi: 10.1016/0021-9290(92)90060-E.  Google Scholar

[21]

N. StergiopulosF. SpiridonF. Pythoud and J. J. Meister, On the wave transmission and reflection properties of stenoses, J. Biomechanics, 29 (1996), 31-38.  doi: 10.1016/0021-9290(95)00023-2.  Google Scholar

[22]

A. Swillens and P. Segers, Assessment of arterial pressure wave reflection: Methodological considerations, Artery Research, 2 (2008), 122-131.  doi: 10.1016/j.artres.2008.05.001.  Google Scholar

[23]

A. Tozeren, Elastic properties of arteries and their influence on the cardiovascular system, J. Biomech. Eng., 106 (1984), 182-185.  doi: 10.1115/1.3138479.  Google Scholar

[24]

C. TuM. DevilleL. Dheur and L. Vanderschuren, Finite element simulation of pulsatile flow through arterial stenosis, J. Biomechanics, 25 (1992), 1141-1152.  doi: 10.1016/0021-9290(92)90070-H.  Google Scholar

[25]

J. J. Wang and K. H. Parker, Wave propagation in a model of the arterial circulation, J. Biomechanics, 37 (2004), 457-470.  doi: 10.1016/j.jbiomech.2003.09.007.  Google Scholar

show all references

References:
[1]

L. AugsburgerP. ReymonE. FonckZ. KulcarM. FarhatM. OhtaN. Stergiopulos and D. A. Rufenacht, Methodologies to assess blood flow in cerebral aneurysms: Current state of research and perspectives, Journal of Neuroradiology, 36 (2009), 270-277.  doi: 10.1016/j.neurad.2009.03.001.  Google Scholar

[2]

I. Bakirtas and A. Antar, Effect of stenosis on solitary waves in arteries, International Journal of Engineering Science, 43 (2005), 730-743.  doi: 10.1016/j.ijengsci.2004.12.014.  Google Scholar

[3]

W.-S. DuanY.-R. ShiX.-R HongK.-P. Lu and J.-B. Zhao, The reflection of soliton at multi-arterial bifurcations and the effect of the arterial inhomogeneity, Physics Letters A, 295 (2002), 133-138.  doi: 10.1016/S0375-9601(02)00078-6.  Google Scholar

[4]

L. FormaggiaF. NobileA. Quarteroni and A. Veneziani, Multiscale modelling of the circulatory system: A preliminary analysis, Comput. Visual. Sci., 2 (1999), 75-83.  doi: 10.1007/s007910050030.  Google Scholar

[5]

L. FormaggiaF. NobileA. Quarteroni and J.-F. Gerbeau, On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels, Comp. Methods Appl. Mech. Engng., 191 (2001), 561-582.  doi: 10.1016/S0045-7825(01)00302-4.  Google Scholar

[6]

K. Hayashi, K. Handa, S. Nagasawa and A. Okumura, Stiffness and elastic behaviour of human intracranial and extracranial arteries, J. Biomech., 13 (1980), 175-179,181-184. doi: 10.1016/0021-9290(80)90191-8.  Google Scholar

[7]

G. L. LangewoutersK. H. Wesseling and W. J. A. Goedhard, The static properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model, J. Biomech., 17 (1984), 425-435.  doi: 10.1016/0021-9290(84)90034-4.  Google Scholar

[8]

C. A. D. LeguyE. M. H. BosboomH. GelderblomA. P. G. Hoeks and F. N. Van de Vosse, Estimation of distributed arterial mechanical properties using a wave propagation model in a reverse way, Medical Engineering & Physics, 32 (2010), 957-967.  doi: 10.1016/j.medengphy.2010.06.010.  Google Scholar

[9]

K. S. MatthusJ. AlastrueyJ. PeiroA. W. KhirP. SegersR. P. VerdonckK. H. Parker and S. J. Sherwin, Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements, J. Biomechanics, 44 (2011), 2250-2258.  doi: 10.1016/j.jbiomech.2011.05.041.  Google Scholar

[10]

H. G. MoralesI. LarrabideA. J. GeersM. L. Aguilar and A. F. Frangi, Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms, J. Biomechanics, 46 (2013), 2158-2164.  doi: 10.1016/j.jbiomech.2013.06.034.  Google Scholar

[11]

W. W. Nichols, J. W. Petersen, S. J. Denardo and D. D. Christou Arterial stiffness, wave reflection amplitude and left ventricular afterload are increased in overweight individuals, Artery Research, 7 (2013), 222-229. doi: 10.1016/j.artres.2013.08.001.  Google Scholar

[12]

Z. Ovadia-BlechmanS. EinavU. ZaretskyD. Castel and E. Eldar, Characterization of arterial stenosis and elasticity by analysis of high-frequency pressure wave components, Computer in Biology and Medicine, 33 (2003), 375-393.  doi: 10.1016/S0010-4825(03)00004-0.  Google Scholar

[13]

C. S. Park and S. J. Payne, Nonlinear and viscous effects on wave propagation in an elastic axisymmetric vessel, J. of Fluids and Structures, 27 (2011), 134-144.  doi: 10.1016/j.jfluidstructs.2010.10.003.  Google Scholar

[14]

K. H. Parker, An introduction to wave intensity analysis, Medical & Biological Engineering & Computing, 47 (2009), 175-199.  doi: 10.1007/s11517-009-0439-y.  Google Scholar

[15]

T. J. Pedley, Nonlinear pulse wave reflection at an arterial stenosis, J. of Biomechanical Engineering, 105 (1983), 353-359.  doi: 10.1115/1.3138432.  Google Scholar

[16]

S. I. S. PintoE. DoutelJ. B. L. M. Campos and J. M. Miranda, Blood analog fluid flow in vessels with stenosis: Development of an Openfoam code to stimulate pulsatile flow and elasticity of the fluid, APCBEE Procedia, 7 (2013), 73-79.  doi: 10.1016/j.apcbee.2013.08.015.  Google Scholar

[17]

A. Quarteroni and L. Formaggia, Mathematical modelling and numerical simulation of the cardiovascular system, Handbook of Numerical Analysis, 12 (2004), 3-127.  doi: 10.1016/S1570-8659(03)12001-7.  Google Scholar

[18]

P. SegersJ. KipsB. TrachetA. SwillensS. VermeerschD. MahieuE. RietzschelM. D. Buyzere and L. V. Bortel, Limitations and pitfalls of non-invasive measurement of arterial pressure wave reflections and pulse wave velocity, Artery Research, 3 (2009), 79-88.  doi: 10.1016/j.artres.2009.02.006.  Google Scholar

[19]

D. Shahmirzadi and E. E. Konofagou, Quantification of arterial wall inhomogeneity size, distribution, and modulus contrast using FSI numerical pulse wave propagation, Artery Research, 8 (2014), 57-65.  doi: 10.1016/j.artres.2014.01.006.  Google Scholar

[20]

N. StergiopulosD. F. Young and T. R. Rogge, Computer simulation of arterial flow with applications to arterial and aortic stenoses, J. Biomechanics, 25 (1992), 1477-1488.  doi: 10.1016/0021-9290(92)90060-E.  Google Scholar

[21]

N. StergiopulosF. SpiridonF. Pythoud and J. J. Meister, On the wave transmission and reflection properties of stenoses, J. Biomechanics, 29 (1996), 31-38.  doi: 10.1016/0021-9290(95)00023-2.  Google Scholar

[22]

A. Swillens and P. Segers, Assessment of arterial pressure wave reflection: Methodological considerations, Artery Research, 2 (2008), 122-131.  doi: 10.1016/j.artres.2008.05.001.  Google Scholar

[23]

A. Tozeren, Elastic properties of arteries and their influence on the cardiovascular system, J. Biomech. Eng., 106 (1984), 182-185.  doi: 10.1115/1.3138479.  Google Scholar

[24]

C. TuM. DevilleL. Dheur and L. Vanderschuren, Finite element simulation of pulsatile flow through arterial stenosis, J. Biomechanics, 25 (1992), 1141-1152.  doi: 10.1016/0021-9290(92)90070-H.  Google Scholar

[25]

J. J. Wang and K. H. Parker, Wave propagation in a model of the arterial circulation, J. Biomechanics, 37 (2004), 457-470.  doi: 10.1016/j.jbiomech.2003.09.007.  Google Scholar

Figure 1.  Graphical representation of the system with n discontinuities, $S_{n}$ with $n \in \mathbb N$
Figure 2.  $(x, t)$-diagram of the system with 3 discontinuities, $S_{3}$
Figure 3.  Graphical representation of the system with 4 discontinuities, $S_{4}$
Figure 4.  Normalized reflected pressure versus time at the entrance of a 5 mm long stenosis modelled with S2, with different values of reflection coefficients
Figure 12.  Computational solution absolutely converging towards the analytical solution as $\epsilon \rightarrow 0$ in the case of two discontinuities $(n = 2)$ and $\gamma_{01} = - \gamma_{12} = 0.8$
Figure 5.  Normalized reflected pressure versus time at the entrance of a 5 mm long stenosis, 6 cm before a bifurcation modelled with $S_3$, with different values of reflection coefficients for the upstream stenosis and a constant reflection coefficient for the bifurcation
Figure 6.  Normalized reflected pressure versus time at the entrance of two 5 mm stenoses in series modelled with $S_4$, with different value of reflection coefficients for the upstream stenosis and constant reflection coefficients for the downstream stenosis
Figure 7.  Normalized reflected pressure versus time at the entrance of a vessel with a smooth change in stiffness modelled with $S_4$ for different gradients in stiffness
Figure 8.  Numerical analysis of the effet of the control parameter $m$ on the computational solution in the case of two discontinuities $(n = 2)$ with $\gamma_{01} = - \gamma_{12} = 0.8$ as in Section 4.2
Figure 9.  Numerical analysis of the effet of the control parameter $m$ on the computational solution in the case of three discontinuities $(n = 3)$ with $\gamma_{01} = - \gamma_{12} = 0.8$ and $\gamma_{23} = 0.05$ as in Section 4.3
Figure 10.  Numerical analysis of the effet of the control parameter $m$ on the computational solution in the case of four discontinuities $(n = 4)$ with $\gamma_{01} = - \gamma_{12} = 0.8$ and $\gamma_{23} = -\gamma_{34} = 0.2$ as in Section 4.4
Figure 11.  Absolute convergence of the computational solution as a function of number of iterations in the case of two discontinuities $(n = 2)$ and for different values of reflection coefficients
Figure 13.  (Top) computational solution absolutely converging towards the analytical solution as $\epsilon \rightarrow 0$ for (left) n = 3 with $\gamma_{01} = - \gamma_{12} = 0.8$ and $\gamma_{23} = 0.05$ and for (right) n = 4 with $\gamma_{01} = - \gamma_{12} = 0.8$ and $\gamma_{23} = -\gamma_{34} = 0.2$ and (bottom) $\Delta_r(F_N)$ convergence as the number of iterations increases for (left) $n = 3$ and (right) $n = 4$ for different values of reflection coefficients
[1]

Sabine Hittmeir, Laura Kanzler, Angelika Manhart, Christian Schmeiser. Kinetic modelling of colonies of myxobacteria. Kinetic & Related Models, 2021, 14 (1) : 1-24. doi: 10.3934/krm.2020046

[2]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[3]

Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021001

[4]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[5]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[6]

Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133

[7]

M. Dambrine, B. Puig, G. Vallet. A mathematical model for marine dinoflagellates blooms. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 615-633. doi: 10.3934/dcdss.2020424

[8]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[9]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[10]

Urszula Ledzewicz, Heinz Schättler. On the role of pharmacometrics in mathematical models for cancer treatments. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 483-499. doi: 10.3934/dcdsb.2020213

[11]

Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382

[12]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[13]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[14]

Sarra Nouaoura, Radhouane Fekih-Salem, Nahla Abdellatif, Tewfik Sari. Mathematical analysis of a three-tiered food-web in the chemostat. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020369

[15]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[16]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[17]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[18]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[19]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[20]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (277)
  • HTML views (380)
  • Cited by (0)

Other articles
by authors

[Back to Top]