- Previous Article
- MCRF Home
- This Issue
-
Next Article
A deterministic linear quadratic time-inconsistent optimal control problem
Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential
1. | College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610068 |
2. | College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, China |
3. | College of Economics, Sichuan Normal University, Chengdu 610066, China |
References:
[1] |
R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications, SIAM J. Math. Anal., 35 (2003), 823-843.
doi: 10.1137/S0036141002416936. |
[2] |
R. Carles, Critical nonlinear Schrödinger equations with and without harmonic potential, Math. Models Methods Appl. Sci., 12 (2002), 1513-1523.
doi: 10.1142/S0218202502002215. |
[3] |
T. Cazenave, "Semilinear Schrödinger Equations," "Courant Lecture Notes in Mathematics," 10, NYU, CIMS, AMS, 2003. |
[4] |
M. J. Landam, G. C. Papanicolao, C. Sulem and P. L. Sulem, Rate of blowup for solutions of nonlinear Schrödinger equation at critical dimension, Phys. Rev. A., 38 (1988), 3837-3834.
doi: 10.1103/PhysRevA.38.3837. |
[5] |
X. G. Li, J. Zhang and G. G. Chen, $L^{2}$-concentration of blow-up solutions for the nonlinear Schrödinger equations with harmonic potential, Chinese Ann. Math. Ser. A, 26 (2005), 31-38; (translation in Chinese J. Contemp. Math., 26 (2005), 35-42. |
[6] |
X. G. Li and J. Zhang, Limit behavior of blow-up solutions for critical nonlinear Schrödinger equation with harmonic potential, Differential Integral Equations, 19 (2006), 761-771. |
[7] |
M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u +u^p=0$ in $R^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266. |
[8] |
F. Merle and P. Raphaël, Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math., 161 (2005), 157-222.
doi: 10.4007/annals.2005.161.157. |
[9] |
F. Merle and P. Raphaël, On a sharp lower bound on the blow-up rate for the $L^{2}$-critical nonlinear Schrödingerequation, J. Amer. Math. Soc., 19 (2005), 37-90.
doi: 10.1090/S0894-0347-05-00499-6. |
[10] |
F. Merle and P. Raphaël, On universality of blow up profile for $L^{2}$-critical nonlinear Schrödinger equation, Invent. Math., 156 (2004), 565-672.
doi: 10.1007/s00222-003-0346-z. |
[11] |
F. Merle and P. Raphaël, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys., 253 (2005), 675-704.
doi: 10.1007/s00220-004-1198-0. |
[12] |
F. Merle and Y. Tsutsumi, $L^{2}$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Differential Equations, 84 (1990), 205-214.
doi: 10.1016/0022-0396(90)90075-Z. |
[13] |
Y. G. Oh, Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials, J. Differential Equations, 81 (1989), 255-274.
doi: 10.1016/0022-0396(89)90123-X. |
[14] |
P. Raphaël, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation, Math. Ann., 331 (2005), 577-609.
doi: 10.1007/s00208-004-0596-0. |
[15] |
W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.
doi: 10.1007/BF01626517. |
[16] |
Y. Tsutsumi, Rate of $L^2$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power, Nonlinear Anal., 15 (1990), 719-724.
doi: 10.1016/0362-546X(90)90088-X. |
[17] |
M. Wadati and T. Tsurumi, Critical number of atoms for the magnetically trapped Bose-Einstein condensate with negative s-wave scattering length, Phys. Lett. A, 247 (1998), 287-293.
doi: 10.1016/S0375-9601(98)00583-0. |
[18] |
M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1983), 567-576.
doi: 10.1007/BF01208265. |
[19] |
J. Zhang, Stability of attractive Bose-Einstein condensate, J. Statist. Phys., 101 (2000), 731-746.
doi: 10.1023/A:1026437923987. |
[20] |
J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential, Comm. Partial Differential Equations, 30 (2005), 1429-1443.
doi: 10.1080/03605300500299539. |
show all references
References:
[1] |
R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications, SIAM J. Math. Anal., 35 (2003), 823-843.
doi: 10.1137/S0036141002416936. |
[2] |
R. Carles, Critical nonlinear Schrödinger equations with and without harmonic potential, Math. Models Methods Appl. Sci., 12 (2002), 1513-1523.
doi: 10.1142/S0218202502002215. |
[3] |
T. Cazenave, "Semilinear Schrödinger Equations," "Courant Lecture Notes in Mathematics," 10, NYU, CIMS, AMS, 2003. |
[4] |
M. J. Landam, G. C. Papanicolao, C. Sulem and P. L. Sulem, Rate of blowup for solutions of nonlinear Schrödinger equation at critical dimension, Phys. Rev. A., 38 (1988), 3837-3834.
doi: 10.1103/PhysRevA.38.3837. |
[5] |
X. G. Li, J. Zhang and G. G. Chen, $L^{2}$-concentration of blow-up solutions for the nonlinear Schrödinger equations with harmonic potential, Chinese Ann. Math. Ser. A, 26 (2005), 31-38; (translation in Chinese J. Contemp. Math., 26 (2005), 35-42. |
[6] |
X. G. Li and J. Zhang, Limit behavior of blow-up solutions for critical nonlinear Schrödinger equation with harmonic potential, Differential Integral Equations, 19 (2006), 761-771. |
[7] |
M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u +u^p=0$ in $R^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266. |
[8] |
F. Merle and P. Raphaël, Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math., 161 (2005), 157-222.
doi: 10.4007/annals.2005.161.157. |
[9] |
F. Merle and P. Raphaël, On a sharp lower bound on the blow-up rate for the $L^{2}$-critical nonlinear Schrödingerequation, J. Amer. Math. Soc., 19 (2005), 37-90.
doi: 10.1090/S0894-0347-05-00499-6. |
[10] |
F. Merle and P. Raphaël, On universality of blow up profile for $L^{2}$-critical nonlinear Schrödinger equation, Invent. Math., 156 (2004), 565-672.
doi: 10.1007/s00222-003-0346-z. |
[11] |
F. Merle and P. Raphaël, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys., 253 (2005), 675-704.
doi: 10.1007/s00220-004-1198-0. |
[12] |
F. Merle and Y. Tsutsumi, $L^{2}$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Differential Equations, 84 (1990), 205-214.
doi: 10.1016/0022-0396(90)90075-Z. |
[13] |
Y. G. Oh, Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials, J. Differential Equations, 81 (1989), 255-274.
doi: 10.1016/0022-0396(89)90123-X. |
[14] |
P. Raphaël, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation, Math. Ann., 331 (2005), 577-609.
doi: 10.1007/s00208-004-0596-0. |
[15] |
W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.
doi: 10.1007/BF01626517. |
[16] |
Y. Tsutsumi, Rate of $L^2$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power, Nonlinear Anal., 15 (1990), 719-724.
doi: 10.1016/0362-546X(90)90088-X. |
[17] |
M. Wadati and T. Tsurumi, Critical number of atoms for the magnetically trapped Bose-Einstein condensate with negative s-wave scattering length, Phys. Lett. A, 247 (1998), 287-293.
doi: 10.1016/S0375-9601(98)00583-0. |
[18] |
M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1983), 567-576.
doi: 10.1007/BF01208265. |
[19] |
J. Zhang, Stability of attractive Bose-Einstein condensate, J. Statist. Phys., 101 (2000), 731-746.
doi: 10.1023/A:1026437923987. |
[20] |
J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential, Comm. Partial Differential Equations, 30 (2005), 1429-1443.
doi: 10.1080/03605300500299539. |
[1] |
Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639 |
[2] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure and Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
[3] |
Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034 |
[4] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[5] |
Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085 |
[6] |
Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169 |
[7] |
Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure and Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027 |
[8] |
Van Duong Dinh. Blow-up criteria for linearly damped nonlinear Schrödinger equations. Evolution Equations and Control Theory, 2021, 10 (3) : 599-617. doi: 10.3934/eect.2020082 |
[9] |
Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525 |
[10] |
Zhiyan Ding, Hichem Hajaiej. On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29 (5) : 3449-3469. doi: 10.3934/era.2021047 |
[11] |
Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377 |
[12] |
Myeongju Chae, Sunggeum Hong, Sanghyuk Lee. Mass concentration for the $L^2$-critical nonlinear Schrödinger equations of higher orders. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 909-928. doi: 10.3934/dcds.2011.29.909 |
[13] |
Cristophe Besse, Rémi Carles, Norbert J. Mauser, Hans Peter Stimming. Monotonicity properties of the blow-up time for nonlinear Schrödinger equations: Numerical evidence. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 11-36. doi: 10.3934/dcdsb.2008.9.11 |
[14] |
Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827 |
[15] |
Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903 |
[16] |
Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089 |
[17] |
Divyang G. Bhimani. The nonlinear Schrödinger equations with harmonic potential in modulation spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5923-5944. doi: 10.3934/dcds.2019259 |
[18] |
Yong Luo, Shu Zhang. Concentration behavior of ground states for $ L^2 $-critical Schrödinger Equation with a spatially decaying nonlinearity. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1481-1504. doi: 10.3934/cpaa.2022026 |
[19] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[20] |
Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003 |
2020 Impact Factor: 1.284
Tools
Metrics
Other articles
by authors
[Back to Top]