\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential

Abstract Related Papers Cited by
  • We consider the blow-up solutions of the Cauchy problem for the critical nonlinear Schrödinger equation with a repulsive harmonic potential. In terms of Merle and Tsutsumi's arguments as well as Carles' transform, the $L^2$-concentration property of radially symmetric blow-up solutions is obtained.
    Mathematics Subject Classification: Primary: 35Q55; Secondary: 35B44.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications, SIAM J. Math. Anal., 35 (2003), 823-843.doi: 10.1137/S0036141002416936.

    [2]

    R. Carles, Critical nonlinear Schrödinger equations with and without harmonic potential, Math. Models Methods Appl. Sci., 12 (2002), 1513-1523.doi: 10.1142/S0218202502002215.

    [3]

    T. Cazenave, "Semilinear Schrödinger Equations," "Courant Lecture Notes in Mathematics," 10, NYU, CIMS, AMS, 2003.

    [4]

    M. J. Landam, G. C. Papanicolao, C. Sulem and P. L. Sulem, Rate of blowup for solutions of nonlinear Schrödinger equation at critical dimension, Phys. Rev. A., 38 (1988), 3837-3834.doi: 10.1103/PhysRevA.38.3837.

    [5]

    X. G. Li, J. Zhang and G. G. Chen, $L^{2}$-concentration of blow-up solutions for the nonlinear Schrödinger equations with harmonic potential, Chinese Ann. Math. Ser. A, 26 (2005), 31-38; (translation in Chinese J. Contemp. Math., 26 (2005), 35-42.

    [6]

    X. G. Li and J. Zhang, Limit behavior of blow-up solutions for critical nonlinear Schrödinger equation with harmonic potential, Differential Integral Equations, 19 (2006), 761-771.

    [7]

    M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u +u^p=0$ in $R^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.

    [8]

    F. Merle and P. Raphaël, Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math., 161 (2005), 157-222.doi: 10.4007/annals.2005.161.157.

    [9]

    F. Merle and P. Raphaël, On a sharp lower bound on the blow-up rate for the $L^{2}$-critical nonlinear Schrödingerequation, J. Amer. Math. Soc., 19 (2005), 37-90.doi: 10.1090/S0894-0347-05-00499-6.

    [10]

    F. Merle and P. Raphaël, On universality of blow up profile for $L^{2}$-critical nonlinear Schrödinger equation, Invent. Math., 156 (2004), 565-672.doi: 10.1007/s00222-003-0346-z.

    [11]

    F. Merle and P. Raphaël, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys., 253 (2005), 675-704.doi: 10.1007/s00220-004-1198-0.

    [12]

    F. Merle and Y. Tsutsumi, $L^{2}$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Differential Equations, 84 (1990), 205-214.doi: 10.1016/0022-0396(90)90075-Z.

    [13]

    Y. G. Oh, Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials, J. Differential Equations, 81 (1989), 255-274.doi: 10.1016/0022-0396(89)90123-X.

    [14]

    P. Raphaël, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation, Math. Ann., 331 (2005), 577-609.doi: 10.1007/s00208-004-0596-0.

    [15]

    W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.doi: 10.1007/BF01626517.

    [16]

    Y. Tsutsumi, Rate of $L^2$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power, Nonlinear Anal., 15 (1990), 719-724.doi: 10.1016/0362-546X(90)90088-X.

    [17]

    M. Wadati and T. Tsurumi, Critical number of atoms for the magnetically trapped Bose-Einstein condensate with negative s-wave scattering length, Phys. Lett. A, 247 (1998), 287-293.doi: 10.1016/S0375-9601(98)00583-0.

    [18]

    M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1983), 567-576.doi: 10.1007/BF01208265.

    [19]

    J. Zhang, Stability of attractive Bose-Einstein condensate, J. Statist. Phys., 101 (2000), 731-746.doi: 10.1023/A:1026437923987.

    [20]

    J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential, Comm. Partial Differential Equations, 30 (2005), 1429-1443.doi: 10.1080/03605300500299539.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(116) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return