March  2011, 1(1): 119-127. doi: 10.3934/mcrf.2011.1.119

Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential

1. 

College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610068

2. 

College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, China

3. 

College of Economics, Sichuan Normal University, Chengdu 610066, China

Received  October 2010 Revised  January 2011 Published  March 2011

We consider the blow-up solutions of the Cauchy problem for the critical nonlinear Schrödinger equation with a repulsive harmonic potential. In terms of Merle and Tsutsumi's arguments as well as Carles' transform, the $L^2$-concentration property of radially symmetric blow-up solutions is obtained.
Citation: Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119
References:
[1]

R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications,, SIAM J. Math. Anal., 35 (2003), 823.  doi: 10.1137/S0036141002416936.  Google Scholar

[2]

R. Carles, Critical nonlinear Schrödinger equations with and without harmonic potential,, Math. Models Methods Appl. Sci., 12 (2002), 1513.  doi: 10.1142/S0218202502002215.  Google Scholar

[3]

T. Cazenave, "Semilinear Schrödinger Equations,", in, 10 (2003).   Google Scholar

[4]

M. J. Landam, G. C. Papanicolao, C. Sulem and P. L. Sulem, Rate of blowup for solutions of nonlinear Schrödinger equation at critical dimension,, Phys. Rev. A., 38 (1988), 3837.  doi: 10.1103/PhysRevA.38.3837.  Google Scholar

[5]

X. G. Li, J. Zhang and G. G. Chen, $L^{2}$-concentration of blow-up solutions for the nonlinear Schrödinger equations with harmonic potential,, Chinese Ann. Math. Ser. A, 26 (2005), 31.   Google Scholar

[6]

X. G. Li and J. Zhang, Limit behavior of blow-up solutions for critical nonlinear Schrödinger equation with harmonic potential,, Differential Integral Equations, 19 (2006), 761.   Google Scholar

[7]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u +u^p=0$ in $R^n$,, Arch. Rational Mech. Anal., 105 (1989), 243.   Google Scholar

[8]

F. Merle and P. Raphaël, Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation,, Ann. of Math., 161 (2005), 157.  doi: 10.4007/annals.2005.161.157.  Google Scholar

[9]

F. Merle and P. Raphaël, On a sharp lower bound on the blow-up rate for the $L^{2}$-critical nonlinear Schrödingerequation,, J. Amer. Math. Soc., 19 (2005), 37.  doi: 10.1090/S0894-0347-05-00499-6.  Google Scholar

[10]

F. Merle and P. Raphaël, On universality of blow up profile for $L^{2}$-critical nonlinear Schrödinger equation,, Invent. Math., 156 (2004), 565.  doi: 10.1007/s00222-003-0346-z.  Google Scholar

[11]

F. Merle and P. Raphaël, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation,, Comm. Math. Phys., 253 (2005), 675.  doi: 10.1007/s00220-004-1198-0.  Google Scholar

[12]

F. Merle and Y. Tsutsumi, $L^{2}$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity,, J. Differential Equations, 84 (1990), 205.  doi: 10.1016/0022-0396(90)90075-Z.  Google Scholar

[13]

Y. G. Oh, Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials,, J. Differential Equations, 81 (1989), 255.  doi: 10.1016/0022-0396(89)90123-X.  Google Scholar

[14]

P. Raphaël, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation,, Math. Ann., 331 (2005), 577.  doi: 10.1007/s00208-004-0596-0.  Google Scholar

[15]

W. A. Strauss, Existence of solitary waves in higher dimensions,, Comm. Math. Phys., 55 (1977), 149.  doi: 10.1007/BF01626517.  Google Scholar

[16]

Y. Tsutsumi, Rate of $L^2$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power,, Nonlinear Anal., 15 (1990), 719.  doi: 10.1016/0362-546X(90)90088-X.  Google Scholar

[17]

M. Wadati and T. Tsurumi, Critical number of atoms for the magnetically trapped Bose-Einstein condensate with negative s-wave scattering length,, Phys. Lett. A, 247 (1998), 287.  doi: 10.1016/S0375-9601(98)00583-0.  Google Scholar

[18]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Comm. Math. Phys., 87 (1983), 567.  doi: 10.1007/BF01208265.  Google Scholar

[19]

J. Zhang, Stability of attractive Bose-Einstein condensate,, J. Statist. Phys., 101 (2000), 731.  doi: 10.1023/A:1026437923987.  Google Scholar

[20]

J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential,, Comm. Partial Differential Equations, 30 (2005), 1429.  doi: 10.1080/03605300500299539.  Google Scholar

show all references

References:
[1]

R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications,, SIAM J. Math. Anal., 35 (2003), 823.  doi: 10.1137/S0036141002416936.  Google Scholar

[2]

R. Carles, Critical nonlinear Schrödinger equations with and without harmonic potential,, Math. Models Methods Appl. Sci., 12 (2002), 1513.  doi: 10.1142/S0218202502002215.  Google Scholar

[3]

T. Cazenave, "Semilinear Schrödinger Equations,", in, 10 (2003).   Google Scholar

[4]

M. J. Landam, G. C. Papanicolao, C. Sulem and P. L. Sulem, Rate of blowup for solutions of nonlinear Schrödinger equation at critical dimension,, Phys. Rev. A., 38 (1988), 3837.  doi: 10.1103/PhysRevA.38.3837.  Google Scholar

[5]

X. G. Li, J. Zhang and G. G. Chen, $L^{2}$-concentration of blow-up solutions for the nonlinear Schrödinger equations with harmonic potential,, Chinese Ann. Math. Ser. A, 26 (2005), 31.   Google Scholar

[6]

X. G. Li and J. Zhang, Limit behavior of blow-up solutions for critical nonlinear Schrödinger equation with harmonic potential,, Differential Integral Equations, 19 (2006), 761.   Google Scholar

[7]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u +u^p=0$ in $R^n$,, Arch. Rational Mech. Anal., 105 (1989), 243.   Google Scholar

[8]

F. Merle and P. Raphaël, Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation,, Ann. of Math., 161 (2005), 157.  doi: 10.4007/annals.2005.161.157.  Google Scholar

[9]

F. Merle and P. Raphaël, On a sharp lower bound on the blow-up rate for the $L^{2}$-critical nonlinear Schrödingerequation,, J. Amer. Math. Soc., 19 (2005), 37.  doi: 10.1090/S0894-0347-05-00499-6.  Google Scholar

[10]

F. Merle and P. Raphaël, On universality of blow up profile for $L^{2}$-critical nonlinear Schrödinger equation,, Invent. Math., 156 (2004), 565.  doi: 10.1007/s00222-003-0346-z.  Google Scholar

[11]

F. Merle and P. Raphaël, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation,, Comm. Math. Phys., 253 (2005), 675.  doi: 10.1007/s00220-004-1198-0.  Google Scholar

[12]

F. Merle and Y. Tsutsumi, $L^{2}$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity,, J. Differential Equations, 84 (1990), 205.  doi: 10.1016/0022-0396(90)90075-Z.  Google Scholar

[13]

Y. G. Oh, Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials,, J. Differential Equations, 81 (1989), 255.  doi: 10.1016/0022-0396(89)90123-X.  Google Scholar

[14]

P. Raphaël, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation,, Math. Ann., 331 (2005), 577.  doi: 10.1007/s00208-004-0596-0.  Google Scholar

[15]

W. A. Strauss, Existence of solitary waves in higher dimensions,, Comm. Math. Phys., 55 (1977), 149.  doi: 10.1007/BF01626517.  Google Scholar

[16]

Y. Tsutsumi, Rate of $L^2$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power,, Nonlinear Anal., 15 (1990), 719.  doi: 10.1016/0362-546X(90)90088-X.  Google Scholar

[17]

M. Wadati and T. Tsurumi, Critical number of atoms for the magnetically trapped Bose-Einstein condensate with negative s-wave scattering length,, Phys. Lett. A, 247 (1998), 287.  doi: 10.1016/S0375-9601(98)00583-0.  Google Scholar

[18]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Comm. Math. Phys., 87 (1983), 567.  doi: 10.1007/BF01208265.  Google Scholar

[19]

J. Zhang, Stability of attractive Bose-Einstein condensate,, J. Statist. Phys., 101 (2000), 731.  doi: 10.1023/A:1026437923987.  Google Scholar

[20]

J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential,, Comm. Partial Differential Equations, 30 (2005), 1429.  doi: 10.1080/03605300500299539.  Google Scholar

[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[2]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[3]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[4]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[5]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[6]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[7]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[8]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[9]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[10]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[11]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[12]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[13]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[14]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[15]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[16]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[17]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[18]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[19]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[20]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]