March  2011, 1(1): 119-127. doi: 10.3934/mcrf.2011.1.119

Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential

1. 

College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610068

2. 

College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, China

3. 

College of Economics, Sichuan Normal University, Chengdu 610066, China

Received  October 2010 Revised  January 2011 Published  March 2011

We consider the blow-up solutions of the Cauchy problem for the critical nonlinear Schrödinger equation with a repulsive harmonic potential. In terms of Merle and Tsutsumi's arguments as well as Carles' transform, the $L^2$-concentration property of radially symmetric blow-up solutions is obtained.
Citation: Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119
References:
[1]

R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications,, SIAM J. Math. Anal., 35 (2003), 823.  doi: 10.1137/S0036141002416936.  Google Scholar

[2]

R. Carles, Critical nonlinear Schrödinger equations with and without harmonic potential,, Math. Models Methods Appl. Sci., 12 (2002), 1513.  doi: 10.1142/S0218202502002215.  Google Scholar

[3]

T. Cazenave, "Semilinear Schrödinger Equations,", in, 10 (2003).   Google Scholar

[4]

M. J. Landam, G. C. Papanicolao, C. Sulem and P. L. Sulem, Rate of blowup for solutions of nonlinear Schrödinger equation at critical dimension,, Phys. Rev. A., 38 (1988), 3837.  doi: 10.1103/PhysRevA.38.3837.  Google Scholar

[5]

X. G. Li, J. Zhang and G. G. Chen, $L^{2}$-concentration of blow-up solutions for the nonlinear Schrödinger equations with harmonic potential,, Chinese Ann. Math. Ser. A, 26 (2005), 31.   Google Scholar

[6]

X. G. Li and J. Zhang, Limit behavior of blow-up solutions for critical nonlinear Schrödinger equation with harmonic potential,, Differential Integral Equations, 19 (2006), 761.   Google Scholar

[7]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u +u^p=0$ in $R^n$,, Arch. Rational Mech. Anal., 105 (1989), 243.   Google Scholar

[8]

F. Merle and P. Raphaël, Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation,, Ann. of Math., 161 (2005), 157.  doi: 10.4007/annals.2005.161.157.  Google Scholar

[9]

F. Merle and P. Raphaël, On a sharp lower bound on the blow-up rate for the $L^{2}$-critical nonlinear Schrödingerequation,, J. Amer. Math. Soc., 19 (2005), 37.  doi: 10.1090/S0894-0347-05-00499-6.  Google Scholar

[10]

F. Merle and P. Raphaël, On universality of blow up profile for $L^{2}$-critical nonlinear Schrödinger equation,, Invent. Math., 156 (2004), 565.  doi: 10.1007/s00222-003-0346-z.  Google Scholar

[11]

F. Merle and P. Raphaël, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation,, Comm. Math. Phys., 253 (2005), 675.  doi: 10.1007/s00220-004-1198-0.  Google Scholar

[12]

F. Merle and Y. Tsutsumi, $L^{2}$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity,, J. Differential Equations, 84 (1990), 205.  doi: 10.1016/0022-0396(90)90075-Z.  Google Scholar

[13]

Y. G. Oh, Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials,, J. Differential Equations, 81 (1989), 255.  doi: 10.1016/0022-0396(89)90123-X.  Google Scholar

[14]

P. Raphaël, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation,, Math. Ann., 331 (2005), 577.  doi: 10.1007/s00208-004-0596-0.  Google Scholar

[15]

W. A. Strauss, Existence of solitary waves in higher dimensions,, Comm. Math. Phys., 55 (1977), 149.  doi: 10.1007/BF01626517.  Google Scholar

[16]

Y. Tsutsumi, Rate of $L^2$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power,, Nonlinear Anal., 15 (1990), 719.  doi: 10.1016/0362-546X(90)90088-X.  Google Scholar

[17]

M. Wadati and T. Tsurumi, Critical number of atoms for the magnetically trapped Bose-Einstein condensate with negative s-wave scattering length,, Phys. Lett. A, 247 (1998), 287.  doi: 10.1016/S0375-9601(98)00583-0.  Google Scholar

[18]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Comm. Math. Phys., 87 (1983), 567.  doi: 10.1007/BF01208265.  Google Scholar

[19]

J. Zhang, Stability of attractive Bose-Einstein condensate,, J. Statist. Phys., 101 (2000), 731.  doi: 10.1023/A:1026437923987.  Google Scholar

[20]

J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential,, Comm. Partial Differential Equations, 30 (2005), 1429.  doi: 10.1080/03605300500299539.  Google Scholar

show all references

References:
[1]

R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications,, SIAM J. Math. Anal., 35 (2003), 823.  doi: 10.1137/S0036141002416936.  Google Scholar

[2]

R. Carles, Critical nonlinear Schrödinger equations with and without harmonic potential,, Math. Models Methods Appl. Sci., 12 (2002), 1513.  doi: 10.1142/S0218202502002215.  Google Scholar

[3]

T. Cazenave, "Semilinear Schrödinger Equations,", in, 10 (2003).   Google Scholar

[4]

M. J. Landam, G. C. Papanicolao, C. Sulem and P. L. Sulem, Rate of blowup for solutions of nonlinear Schrödinger equation at critical dimension,, Phys. Rev. A., 38 (1988), 3837.  doi: 10.1103/PhysRevA.38.3837.  Google Scholar

[5]

X. G. Li, J. Zhang and G. G. Chen, $L^{2}$-concentration of blow-up solutions for the nonlinear Schrödinger equations with harmonic potential,, Chinese Ann. Math. Ser. A, 26 (2005), 31.   Google Scholar

[6]

X. G. Li and J. Zhang, Limit behavior of blow-up solutions for critical nonlinear Schrödinger equation with harmonic potential,, Differential Integral Equations, 19 (2006), 761.   Google Scholar

[7]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u +u^p=0$ in $R^n$,, Arch. Rational Mech. Anal., 105 (1989), 243.   Google Scholar

[8]

F. Merle and P. Raphaël, Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation,, Ann. of Math., 161 (2005), 157.  doi: 10.4007/annals.2005.161.157.  Google Scholar

[9]

F. Merle and P. Raphaël, On a sharp lower bound on the blow-up rate for the $L^{2}$-critical nonlinear Schrödingerequation,, J. Amer. Math. Soc., 19 (2005), 37.  doi: 10.1090/S0894-0347-05-00499-6.  Google Scholar

[10]

F. Merle and P. Raphaël, On universality of blow up profile for $L^{2}$-critical nonlinear Schrödinger equation,, Invent. Math., 156 (2004), 565.  doi: 10.1007/s00222-003-0346-z.  Google Scholar

[11]

F. Merle and P. Raphaël, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation,, Comm. Math. Phys., 253 (2005), 675.  doi: 10.1007/s00220-004-1198-0.  Google Scholar

[12]

F. Merle and Y. Tsutsumi, $L^{2}$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity,, J. Differential Equations, 84 (1990), 205.  doi: 10.1016/0022-0396(90)90075-Z.  Google Scholar

[13]

Y. G. Oh, Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials,, J. Differential Equations, 81 (1989), 255.  doi: 10.1016/0022-0396(89)90123-X.  Google Scholar

[14]

P. Raphaël, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation,, Math. Ann., 331 (2005), 577.  doi: 10.1007/s00208-004-0596-0.  Google Scholar

[15]

W. A. Strauss, Existence of solitary waves in higher dimensions,, Comm. Math. Phys., 55 (1977), 149.  doi: 10.1007/BF01626517.  Google Scholar

[16]

Y. Tsutsumi, Rate of $L^2$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power,, Nonlinear Anal., 15 (1990), 719.  doi: 10.1016/0362-546X(90)90088-X.  Google Scholar

[17]

M. Wadati and T. Tsurumi, Critical number of atoms for the magnetically trapped Bose-Einstein condensate with negative s-wave scattering length,, Phys. Lett. A, 247 (1998), 287.  doi: 10.1016/S0375-9601(98)00583-0.  Google Scholar

[18]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Comm. Math. Phys., 87 (1983), 567.  doi: 10.1007/BF01208265.  Google Scholar

[19]

J. Zhang, Stability of attractive Bose-Einstein condensate,, J. Statist. Phys., 101 (2000), 731.  doi: 10.1023/A:1026437923987.  Google Scholar

[20]

J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential,, Comm. Partial Differential Equations, 30 (2005), 1429.  doi: 10.1080/03605300500299539.  Google Scholar

[1]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[2]

Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085

[3]

Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034

[4]

Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169

[5]

Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027

[6]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[7]

Myeongju Chae, Sunggeum Hong, Sanghyuk Lee. Mass concentration for the $L^2$-critical nonlinear Schrödinger equations of higher orders. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 909-928. doi: 10.3934/dcds.2011.29.909

[8]

Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377

[9]

Cristophe Besse, Rémi Carles, Norbert J. Mauser, Hans Peter Stimming. Monotonicity properties of the blow-up time for nonlinear Schrödinger equations: Numerical evidence. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 11-36. doi: 10.3934/dcdsb.2008.9.11

[10]

Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827

[11]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[12]

Divyang G. Bhimani. The nonlinear Schrödinger equations with harmonic potential in modulation spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5923-5944. doi: 10.3934/dcds.2019259

[13]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

[14]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[15]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[16]

Laurent Di Menza, Olivier Goubet. Stabilizing blow up solutions to nonlinear schrÖdinger equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1059-1082. doi: 10.3934/cpaa.2017051

[17]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[18]

Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure & Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183

[19]

Reika Fukuizumi, Louis Jeanjean. Stability of standing waves for a nonlinear Schrödinger equation wdelta potentialith a repulsive Dirac. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 121-136. doi: 10.3934/dcds.2008.21.121

[20]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1023-1041. doi: 10.3934/cpaa.2007.6.1023

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]