Citation: |
[1] |
S. W. Hansen, Several related models for multilayer sandwich plates, Math. Models Methods Appl. Sci., 14 (2004), 1103-1132.doi: 10.1142/S0218202504003568. |
[2] |
S. W. Hansen and O. Yu. Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with clamped boundary conditions, to appear, ESAIM:COCV. |
[3] |
S. W. Hansen and R. Rajaram, Riesz basis property and related results for a Rao-Nakra sandwich beam, Discrete Contin. Dynam. Syst., 2005, suppl., 365-375. |
[4] |
L. Hörmander, "Linear Partial Differential Equations," Springer-Verlag, Berlin, 1963. |
[5] |
O. Yu. Imanuvilov and J.-P. Puel, Global carleman estimates for weak solutions of elliptic nonhomogeneous dirichlet problems, Int. Math. Res. Not., 2003, 883-913. doi: 10.1155/S107379280321117X. |
[6] |
O. Yu. Imanuvilov, On Carleman estimates for hyperbolic equations, Asymptotic Analysis, 32 (2002), 185-220. |
[7] |
O. Yu. Imanuvilov and M. Yamamoto, Carleman estimates and the non-stationary Lamé system and the application to an inverse problem, ESIAM COCV, 11 (2005), 1-56.doi: 10.1051/cocv:2004030. |
[8] |
O. Yu. Imanuvilov and M. Yamamoto, Carleman estimates for the Lame system with the stress boundary condition, Publ. Research Inst. Math Sciences, 43 (2007), 1023-1093.doi: 10.2977/prims/1201012379. |
[9] |
V. Komornik, A new method of exact controllability in short time and applications, Ann. Fac. Sci. Toulouse Math. (5), 10 (1989), 415-464. |
[10] |
H. Kumano-go, "Pseudodifferential Operators," MIT Press, Cambrige, Mass.-London, 1981. |
[11] |
J. E. Lagnese, "Boundary Stabilization of Thin Plates," SIAM Studies in Applied Mathematics, 10, |
[12] |
J. E. Lagnese and J.-L Lions, "Modelling, Analysis and Control of Thin Plates," Recherches en Mathématiques Appliquées, [Research in Applied Mathematics], 6, Masson, Paris, 1988. |
[13] |
I. Lasiecka and R. Triggiani, Exact controllability and uniform stabilization of Kirchoff plates with boundary controls only on $\Delta$|$\Sigma$ and homogeneous boundary displacement, J. Diff. Eqns., 93 (1991), 62-101.doi: 10.1016/0022-0396(91)90022-2. |
[14] |
I. Lasiecka and R. Triggiani, Sharp regularity for elastic and thermoelastic Kirchoff equations with free boundary conditions, Rocky Mountain J. Math., 30 (2000), 981-1024.doi: 10.1216/rmjm/1021477256. |
[15] |
G. Lebeau and L. Robbiano, Contrôle exact de l'equation de la chaleur, (French) [Exact control of the heat equation], Séminaire sur les Équations aux Dérivées Partielles, École Polytech., Palaiseau, 1995. |
[16] |
J.-L. Lions, "Optimal Control of Systems Governed by Partial Differential Equations," Springer-Verlag, New York-Berlin, 1971. |
[17] |
J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), 1-68.doi: 10.1137/1030001. |
[18] |
Y. V. K. S. Rao and B. C. Nakra, Vibrations of unsymmetrical sandwich beams and plates with viscoelastic cores, J. Sound Vibr., 34 (1974), 309-326.doi: 10.1016/S0022-460X(74)80315-9. |
[19] |
R. Rajaram, Exact boundary controllability results for a Rao-Nakra sandwich beam, Systems Control Lett., 56 (2007), 558-567.doi: 10.1016/j.sysconle.2007.03.007. |
[20] |
M. Taylor, "Pseudodifferential Operators,", Princeton Mathematical Series, 34, Princeton University Press, Princeton, New Jersey, 1981. |
[21] |
D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems, J. Math. Pures Appl. (9), 75 (1996), 367-408. |
[22] |
X. Zhang, Exact controllability of the semilinear plate equations, Asymptot. Anal., 27 (2001), 95-125. |
[23] |
X. Zhang, Explicit observability inequalities for the wave equation with lower order terms by means of Carleman inequalities, SIAM J. Control and Optimization, 39 (2000), 812-834.doi: 10.1137/S0363012999350298. |