\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions

Abstract / Introduction Related Papers Cited by
  • Exact controllability of a multilayer plate system with free boundary conditions are obtained by the method of Carleman estimates. The multilayer plate system is a natural multilayer generalization of a three-layer "sandwich plate'' system due to Rao and Nakra. In the multilayer version, $m$ shear deformable layers alternate with $m+1$ layers modeled under Kirchoff plate assumptions. The resulting system involves $m+1$ Lamé systems coupled with a scalar Kirchhoff plate equation. The controls are taken to be distributed in a neighborhood of the boundary. This paper is the sequel to [2] in which only clamped and hinged boundary conditions are considered.
    Mathematics Subject Classification: Primary: 93B05, 93C20; Secondary: 74K20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. W. Hansen, Several related models for multilayer sandwich plates, Math. Models Methods Appl. Sci., 14 (2004), 1103-1132.doi: 10.1142/S0218202504003568.

    [2]

    S. W. Hansen and O. Yu. ImanuvilovExact controllability of a multilayer Rao-Nakra plate with clamped boundary conditions, to appear, ESAIM:COCV.

    [3]

    S. W. Hansen and R. RajaramRiesz basis property and related results for a Rao-Nakra sandwich beam, Discrete Contin. Dynam. Syst., 2005, suppl., 365-375.

    [4]

    L. Hörmander, "Linear Partial Differential Equations," Springer-Verlag, Berlin, 1963.

    [5]

    O. Yu. Imanuvilov and J.-P. PuelGlobal carleman estimates for weak solutions of elliptic nonhomogeneous dirichlet problems, Int. Math. Res. Not., 2003, 883-913. doi: 10.1155/S107379280321117X.

    [6]

    O. Yu. Imanuvilov, On Carleman estimates for hyperbolic equations, Asymptotic Analysis, 32 (2002), 185-220.

    [7]

    O. Yu. Imanuvilov and M. Yamamoto, Carleman estimates and the non-stationary Lamé system and the application to an inverse problem, ESIAM COCV, 11 (2005), 1-56.doi: 10.1051/cocv:2004030.

    [8]

    O. Yu. Imanuvilov and M. Yamamoto, Carleman estimates for the Lame system with the stress boundary condition, Publ. Research Inst. Math Sciences, 43 (2007), 1023-1093.doi: 10.2977/prims/1201012379.

    [9]

    V. Komornik, A new method of exact controllability in short time and applications, Ann. Fac. Sci. Toulouse Math. (5), 10 (1989), 415-464.

    [10]

    H. Kumano-go, "Pseudodifferential Operators," MIT Press, Cambrige, Mass.-London, 1981.

    [11]

    J. E. Lagnese, "Boundary Stabilization of Thin Plates," SIAM Studies in Applied Mathematics, 10,

    [12]

    J. E. Lagnese and J.-L Lions, "Modelling, Analysis and Control of Thin Plates," Recherches en Mathématiques Appliquées, [Research in Applied Mathematics], 6, Masson, Paris, 1988.

    [13]

    I. Lasiecka and R. Triggiani, Exact controllability and uniform stabilization of Kirchoff plates with boundary controls only on $\Delta$|$\Sigma$ and homogeneous boundary displacement, J. Diff. Eqns., 93 (1991), 62-101.doi: 10.1016/0022-0396(91)90022-2.

    [14]

    I. Lasiecka and R. Triggiani, Sharp regularity for elastic and thermoelastic Kirchoff equations with free boundary conditions, Rocky Mountain J. Math., 30 (2000), 981-1024.doi: 10.1216/rmjm/1021477256.

    [15]

    G. Lebeau and L. Robbiano, Contrôle exact de l'equation de la chaleur, (French) [Exact control of the heat equation], Séminaire sur les Équations aux Dérivées Partielles, École Polytech., Palaiseau, 1995.

    [16]

    J.-L. Lions, "Optimal Control of Systems Governed by Partial Differential Equations," Springer-Verlag, New York-Berlin, 1971.

    [17]

    J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), 1-68.doi: 10.1137/1030001.

    [18]

    Y. V. K. S. Rao and B. C. Nakra, Vibrations of unsymmetrical sandwich beams and plates with viscoelastic cores, J. Sound Vibr., 34 (1974), 309-326.doi: 10.1016/S0022-460X(74)80315-9.

    [19]

    R. Rajaram, Exact boundary controllability results for a Rao-Nakra sandwich beam, Systems Control Lett., 56 (2007), 558-567.doi: 10.1016/j.sysconle.2007.03.007.

    [20]

    M. Taylor, "Pseudodifferential Operators,", Princeton Mathematical Series, 34, Princeton University Press, Princeton, New Jersey, 1981.

    [21]

    D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems, J. Math. Pures Appl. (9), 75 (1996), 367-408.

    [22]

    X. Zhang, Exact controllability of the semilinear plate equations, Asymptot. Anal., 27 (2001), 95-125.

    [23]

    X. Zhang, Explicit observability inequalities for the wave equation with lower order terms by means of Carleman inequalities, SIAM J. Control and Optimization, 39 (2000), 812-834.doi: 10.1137/S0363012999350298.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(98) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return