June  2011, 1(2): 231-250. doi: 10.3934/mcrf.2011.1.231

Strict Lyapunov functions for semilinear parabolic partial differential equations

1. 

Team INRIA DISCO, CNRS-Supelec, 3 rue Joliot Curie, 91192 Gif-sur-Yvette, France

2. 

Department of Automatic Control, Gipsa-lab, 961 rue de la Houille Blanche, BP 46, 38402 Grenoble Cedex

Received  November 2010 Revised  March 2011 Published  June 2011

For families of partial differential equations (PDEs) with particular boundary conditions, strict Lyapunov functions are constructed. The PDEs under consideration are parabolic and, in addition to the diffusion term, may contain a nonlinear source term plus a convection term. The boundary conditions may be either the classical Dirichlet conditions, or the Neumann boundary conditions or a periodic one. The constructions rely on the knowledge of weak Lyapunov functions for the nonlinear source term. The strict Lyapunov functions are used to prove asymptotic stability in the framework of an appropriate topology. Moreover, when an uncertainty is considered, our construction of a strict Lyapunov function makes it possible to establish some robustness properties of Input-to-State Stability (ISS) type.
Citation: Frédéric Mazenc, Christophe Prieur. Strict Lyapunov functions for semilinear parabolic partial differential equations. Mathematical Control & Related Fields, 2011, 1 (2) : 231-250. doi: 10.3934/mcrf.2011.1.231
References:
[1]

J. Bebernes and D. Eberly, "Mathematical Problems from Combustion Theory,", Applied Mathematical Sciences, 83 (1989).   Google Scholar

[2]

T. Cazenave and A. Haraux, "An Introduction to Semilinear Evolution Equations,", Oxford Lecture Series in Mathematics and its Applications, 13 (1998).   Google Scholar

[3]

X.-Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations,, Journal of Differential Equations, 78 (1989), 160.   Google Scholar

[4]

J.-M. Coron, G. Bastin and B. d'Andréa-Novel, Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems,, SIAM Journal on Control and Optimization, 47 (2008), 1460.  doi: 10.1137/070706847.  Google Scholar

[5]

J.-M. Coron and B. d'Andréa-Novel, Stabilization of a rotating body beam without damping,, IEEE Transactions on Automatic Control, 43 (1998), 608.  doi: 10.1109/9.668828.  Google Scholar

[6]

J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Transactions on Automatic Control, 52 (2007), 2.  doi: 10.1109/TAC.2006.887903.  Google Scholar

[7]

J.-M. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations,, SIAM Journal on Control and Optimization, 43 (2004), 549.  doi: 10.1137/S036301290342471X.  Google Scholar

[8]

J.-M. Coron and E. Trélat, Global steady-state stabilization and controllability of 1D semilinear wave equations,, Commun. Contemp. Math., 8 (2006), 535.  doi: 10.1142/S0219199706002209.  Google Scholar

[9]

A. K. Dramé, D. Dochain and J. J. Winkin, Asymptotic behavior and stability for solutions of a biochemical reactor distributed parameter model,, IEEE Transactions on Automatic Control, 53 (2008), 412.  doi: 10.1109/TAC.2007.914948.  Google Scholar

[10]

O. V. Iftime and M. A. Demetriou, Optimal control of switched distributed parameter systems with spatially scheduled actuators,, Automatica J. IFAC, 45 (2009), 312.  doi: 10.1016/j.automatica.2008.07.012.  Google Scholar

[11]

I. Karafyllis, P. Pepe and Z.-P. Jiang, Input-to-output stability for systems described by retarded functional differential equations,, European Journal of Control, 14 (2008), 539.  doi: 10.3166/ejc.14.539-555.  Google Scholar

[12]

M. Krstic and A. Smyshlyaev, "Boundary Control of PDEs. A Course on Backstepping Designs,", Advances in Design and Control, 16 (2008).   Google Scholar

[13]

M. Krstic and A. Smyshlyaev, Adaptive boundary control for unstable parabolic PDEs. I. Lyapunov design,, IEEE Transactions on Automatic Control, 53 (2008), 1575.  doi: 10.1109/TAC.2008.927798.  Google Scholar

[14]

Z.-H. Luo, B.-Z. Guo and O. Morgul, "Stability and Stabilization of Infinite Dimensional Systems with Applications,", Communications and Control Engineering Series, (1999).   Google Scholar

[15]

M. Malisoff and F. Mazenc, "Constructions of Strict Lyapunov Functions,", Communications and Control Engineering Series, (2009).   Google Scholar

[16]

D. Matignon and C. Prieur, Asymptotic stability of linear conservative systems when coupled with diffusive systems,, ESAIM Control Optim. Cal. Var., 11 (2005), 487.  doi: 10.1051/cocv:2005016.  Google Scholar

[17]

F. Mazenc, M. Malisoff and O. Bernard, A simplified design for strict Lyapunov functions under Matrosov conditions,, IEEE Transactions on Automatic Control, 54 (2009), 177.  doi: 10.1109/TAC.2008.2008353.  Google Scholar

[18]

F. Mazenc, M. Malisoff and Z. Lin, Further results on input-to-state stability for nonlinear systems with delayed feedbacks,, Automatica J. IFAC, 44 (2008), 2415.  doi: 10.1016/j.automatica.2008.01.024.  Google Scholar

[19]

F. Mazenc and D. Nesic, Lyapunov functions for time-varying systems satisfying generalized conditions of Matrosov theorem,, Mathematics of Control, 19 (2007), 151.  doi: 10.1007/s00498-007-0015-7.  Google Scholar

[20]

F. Merle and H. Zaag, Stability of the blow-up profile for equations of the type ut$=\delta u+$ |$u$|p-1 $u$,, Duke Math. J., 86 (1997), 143.  doi: 10.1215/S0012-7094-97-08605-1.  Google Scholar

[21]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, 44 (1983).   Google Scholar

[22]

P. Pepe, Input-to-state stabilization of stabilizable, time-delay, control-affine, nonlinear systems,, IEEE Transactions on Automatic Control, 54 (2009), 1688.  doi: 10.1109/TAC.2009.2020642.  Google Scholar

[23]

P. Pepe and H. Ito, On saturation, discontinuities and time-delays in iISS and ISS feedback control redesign,, in, (2010), 190.   Google Scholar

[24]

C. Prieur and F. Mazenc, ISS Lyapunov functions for time-varying hyperbolic partial differential equations,, submitted for publication, (2011).   Google Scholar

[25]

M. Slemrod, A note on complete controllability and stabilizability for linear control systems in Hilbert space,, SIAM Journal on Control, 12 (1974), 500.  doi: 10.1137/0312038.  Google Scholar

[26]

A. Smyshlyaev and M. Krstic, Adaptive boundary control for unstable parabolic PDEs. II. Estimation-based designs,, Automatica J. IFAC, 43 (2007), 1543.  doi: 10.1016/j.automatica.2007.02.014.  Google Scholar

[27]

A. Smyshlyaev and M. Krstic, Adaptive boundary control for unstable parabolic PDEs. III. Output feedback examples with swapping identifiers,, Automatica J. IFAC, 43 (2007), 1557.  doi: 10.1016/j.automatica.2007.02.015.  Google Scholar

[28]

E. D. Sontag, Input to state stability: Basic concepts and results,, Nonlinear and Optimal Control Theory, (2007), 163.   Google Scholar

[29]

M. E. Taylor, "Partial Differential Equations. III. Nonlinear Equations," Applied Mathematical Sciences, 117,, Springer-Verlag, (1997).   Google Scholar

show all references

References:
[1]

J. Bebernes and D. Eberly, "Mathematical Problems from Combustion Theory,", Applied Mathematical Sciences, 83 (1989).   Google Scholar

[2]

T. Cazenave and A. Haraux, "An Introduction to Semilinear Evolution Equations,", Oxford Lecture Series in Mathematics and its Applications, 13 (1998).   Google Scholar

[3]

X.-Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations,, Journal of Differential Equations, 78 (1989), 160.   Google Scholar

[4]

J.-M. Coron, G. Bastin and B. d'Andréa-Novel, Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems,, SIAM Journal on Control and Optimization, 47 (2008), 1460.  doi: 10.1137/070706847.  Google Scholar

[5]

J.-M. Coron and B. d'Andréa-Novel, Stabilization of a rotating body beam without damping,, IEEE Transactions on Automatic Control, 43 (1998), 608.  doi: 10.1109/9.668828.  Google Scholar

[6]

J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Transactions on Automatic Control, 52 (2007), 2.  doi: 10.1109/TAC.2006.887903.  Google Scholar

[7]

J.-M. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations,, SIAM Journal on Control and Optimization, 43 (2004), 549.  doi: 10.1137/S036301290342471X.  Google Scholar

[8]

J.-M. Coron and E. Trélat, Global steady-state stabilization and controllability of 1D semilinear wave equations,, Commun. Contemp. Math., 8 (2006), 535.  doi: 10.1142/S0219199706002209.  Google Scholar

[9]

A. K. Dramé, D. Dochain and J. J. Winkin, Asymptotic behavior and stability for solutions of a biochemical reactor distributed parameter model,, IEEE Transactions on Automatic Control, 53 (2008), 412.  doi: 10.1109/TAC.2007.914948.  Google Scholar

[10]

O. V. Iftime and M. A. Demetriou, Optimal control of switched distributed parameter systems with spatially scheduled actuators,, Automatica J. IFAC, 45 (2009), 312.  doi: 10.1016/j.automatica.2008.07.012.  Google Scholar

[11]

I. Karafyllis, P. Pepe and Z.-P. Jiang, Input-to-output stability for systems described by retarded functional differential equations,, European Journal of Control, 14 (2008), 539.  doi: 10.3166/ejc.14.539-555.  Google Scholar

[12]

M. Krstic and A. Smyshlyaev, "Boundary Control of PDEs. A Course on Backstepping Designs,", Advances in Design and Control, 16 (2008).   Google Scholar

[13]

M. Krstic and A. Smyshlyaev, Adaptive boundary control for unstable parabolic PDEs. I. Lyapunov design,, IEEE Transactions on Automatic Control, 53 (2008), 1575.  doi: 10.1109/TAC.2008.927798.  Google Scholar

[14]

Z.-H. Luo, B.-Z. Guo and O. Morgul, "Stability and Stabilization of Infinite Dimensional Systems with Applications,", Communications and Control Engineering Series, (1999).   Google Scholar

[15]

M. Malisoff and F. Mazenc, "Constructions of Strict Lyapunov Functions,", Communications and Control Engineering Series, (2009).   Google Scholar

[16]

D. Matignon and C. Prieur, Asymptotic stability of linear conservative systems when coupled with diffusive systems,, ESAIM Control Optim. Cal. Var., 11 (2005), 487.  doi: 10.1051/cocv:2005016.  Google Scholar

[17]

F. Mazenc, M. Malisoff and O. Bernard, A simplified design for strict Lyapunov functions under Matrosov conditions,, IEEE Transactions on Automatic Control, 54 (2009), 177.  doi: 10.1109/TAC.2008.2008353.  Google Scholar

[18]

F. Mazenc, M. Malisoff and Z. Lin, Further results on input-to-state stability for nonlinear systems with delayed feedbacks,, Automatica J. IFAC, 44 (2008), 2415.  doi: 10.1016/j.automatica.2008.01.024.  Google Scholar

[19]

F. Mazenc and D. Nesic, Lyapunov functions for time-varying systems satisfying generalized conditions of Matrosov theorem,, Mathematics of Control, 19 (2007), 151.  doi: 10.1007/s00498-007-0015-7.  Google Scholar

[20]

F. Merle and H. Zaag, Stability of the blow-up profile for equations of the type ut$=\delta u+$ |$u$|p-1 $u$,, Duke Math. J., 86 (1997), 143.  doi: 10.1215/S0012-7094-97-08605-1.  Google Scholar

[21]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, 44 (1983).   Google Scholar

[22]

P. Pepe, Input-to-state stabilization of stabilizable, time-delay, control-affine, nonlinear systems,, IEEE Transactions on Automatic Control, 54 (2009), 1688.  doi: 10.1109/TAC.2009.2020642.  Google Scholar

[23]

P. Pepe and H. Ito, On saturation, discontinuities and time-delays in iISS and ISS feedback control redesign,, in, (2010), 190.   Google Scholar

[24]

C. Prieur and F. Mazenc, ISS Lyapunov functions for time-varying hyperbolic partial differential equations,, submitted for publication, (2011).   Google Scholar

[25]

M. Slemrod, A note on complete controllability and stabilizability for linear control systems in Hilbert space,, SIAM Journal on Control, 12 (1974), 500.  doi: 10.1137/0312038.  Google Scholar

[26]

A. Smyshlyaev and M. Krstic, Adaptive boundary control for unstable parabolic PDEs. II. Estimation-based designs,, Automatica J. IFAC, 43 (2007), 1543.  doi: 10.1016/j.automatica.2007.02.014.  Google Scholar

[27]

A. Smyshlyaev and M. Krstic, Adaptive boundary control for unstable parabolic PDEs. III. Output feedback examples with swapping identifiers,, Automatica J. IFAC, 43 (2007), 1557.  doi: 10.1016/j.automatica.2007.02.015.  Google Scholar

[28]

E. D. Sontag, Input to state stability: Basic concepts and results,, Nonlinear and Optimal Control Theory, (2007), 163.   Google Scholar

[29]

M. E. Taylor, "Partial Differential Equations. III. Nonlinear Equations," Applied Mathematical Sciences, 117,, Springer-Verlag, (1997).   Google Scholar

[1]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[2]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[3]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[4]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[5]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[6]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[7]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[8]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[9]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[10]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[11]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[12]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[13]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[14]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[15]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[16]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[17]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[18]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[19]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[20]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (18)

Other articles
by authors

[Back to Top]