June  2011, 1(2): 251-265. doi: 10.3934/mcrf.2011.1.251

Decay of solutions of the wave equation with localized nonlinear damping and trapped rays

1. 

Yangtze Center of Mathematics, Sichuan University, Chengdu 610064

Received  November 2010 Revised  April 2011 Published  June 2011

We prove some decay estimates of the energy of the wave equation governed by localized nonlinear dissipations in a bounded domain in which trapped rays may occur. The approach is based on a comparison with the linear damped wave equation and an interpolation argument. Our result extends to the nonlinear damped wave equation the well-known optimal logarithmic decay rate for the linear damped wave equation with regular initial data.
Citation: Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control & Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251
References:
[1]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024.  doi: 10.1137/0330055.  Google Scholar

[2]

M. Bellassoued, Decay of solutions of the wave equation with arbitrary localized nonlinear damping,, J. Differential Equations, 211 (2005), 303.  doi: 10.1016/j.jde.2004.12.010.  Google Scholar

[3]

N. Burq, Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et abscence de résonnance au voisinage du réel, (French) [Decay of the local energy of the wave equation for the exterior problem and absence of resonance near the real axis],, Acta. Math., 180 (1998), 1.  doi: 10.1007/BF02392877.  Google Scholar

[4]

N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains,, Math. Res. Lett., 14 (2007), 35.   Google Scholar

[5]

M. Daoulatli, Rate of decay of solutions of the wave equation with arbitrary localized nonlinear damping,, Nonlinear Anal., 73 (2010), 987.  doi: 10.1016/j.na.2010.04.026.  Google Scholar

[6]

X. Fu, Logarithmic decay of hyperbolic equations with arbitrary small boundary damping,, Comm. Partial Differential Equations, 34 (2009), 957.  doi: 10.1080/03605300903116389.  Google Scholar

[7]

G. Lebeau, Équation des ondes amorties, (French) [Damped wave equation],, in, 19 (1996), 73.   Google Scholar

[8]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, (French) [Exact control of the heat equation],, Comm. Partial Differential Equations, 20 (1995), 335.  doi: 10.1080/03605309508821097.  Google Scholar

[9]

G. Lebeau and L. Robbiano, Stabilisation de l'équation des ondes par le bord,, Duke Math. J., 86 (1997), 465.  doi: 10.1215/S0012-7094-97-08614-2.  Google Scholar

[10]

J.-L. Lions, "Quelques Méthodes de Résolution des Probl\`emes aux Limites Non Linéaires,", Dunod, (1969).   Google Scholar

[11]

J.-L. Lions and W. Strauss, Some non-linear evolution equations,, Bull. Soc. Math. France, 93 (1965), 43.   Google Scholar

[12]

Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation,, Z. Angew. Math. Phys., 56 (2005), 630.  doi: 10.1007/s00033-004-3073-4.  Google Scholar

[13]

M. Nakao, Decay of solutions of the wave equation with a local nonlinear dissipation,, Math. Ann., 305 (1996), 403.  doi: 10.1007/BF01444231.  Google Scholar

[14]

H. Nishiyama, Polynomial decay rate for damped wave equations on partially rectangular domains,, Math. Res. Lett., 16 (2009), 881.   Google Scholar

[15]

K. D. Phung, Polynomial decay rate for the dissipative wave equation,, J. Differential Equations, 240 (2007), 92.  doi: 10.1016/j.jde.2007.05.016.  Google Scholar

[16]

K. D. Phung, Boundary stabilization for the wave equation in a bounded cylindrical domain,, Discrete Contin. Dyn. Syst., 20 (2008), 1057.  doi: 10.3934/dcds.2008.20.1057.  Google Scholar

[17]

L. Tcheugoué Tébou, Stabilization of the wave equation with localized nonlinear damping,, J. Differential Equations, 145 (1998), 502.  doi: 10.1006/jdeq.1998.3416.  Google Scholar

show all references

References:
[1]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024.  doi: 10.1137/0330055.  Google Scholar

[2]

M. Bellassoued, Decay of solutions of the wave equation with arbitrary localized nonlinear damping,, J. Differential Equations, 211 (2005), 303.  doi: 10.1016/j.jde.2004.12.010.  Google Scholar

[3]

N. Burq, Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et abscence de résonnance au voisinage du réel, (French) [Decay of the local energy of the wave equation for the exterior problem and absence of resonance near the real axis],, Acta. Math., 180 (1998), 1.  doi: 10.1007/BF02392877.  Google Scholar

[4]

N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains,, Math. Res. Lett., 14 (2007), 35.   Google Scholar

[5]

M. Daoulatli, Rate of decay of solutions of the wave equation with arbitrary localized nonlinear damping,, Nonlinear Anal., 73 (2010), 987.  doi: 10.1016/j.na.2010.04.026.  Google Scholar

[6]

X. Fu, Logarithmic decay of hyperbolic equations with arbitrary small boundary damping,, Comm. Partial Differential Equations, 34 (2009), 957.  doi: 10.1080/03605300903116389.  Google Scholar

[7]

G. Lebeau, Équation des ondes amorties, (French) [Damped wave equation],, in, 19 (1996), 73.   Google Scholar

[8]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, (French) [Exact control of the heat equation],, Comm. Partial Differential Equations, 20 (1995), 335.  doi: 10.1080/03605309508821097.  Google Scholar

[9]

G. Lebeau and L. Robbiano, Stabilisation de l'équation des ondes par le bord,, Duke Math. J., 86 (1997), 465.  doi: 10.1215/S0012-7094-97-08614-2.  Google Scholar

[10]

J.-L. Lions, "Quelques Méthodes de Résolution des Probl\`emes aux Limites Non Linéaires,", Dunod, (1969).   Google Scholar

[11]

J.-L. Lions and W. Strauss, Some non-linear evolution equations,, Bull. Soc. Math. France, 93 (1965), 43.   Google Scholar

[12]

Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation,, Z. Angew. Math. Phys., 56 (2005), 630.  doi: 10.1007/s00033-004-3073-4.  Google Scholar

[13]

M. Nakao, Decay of solutions of the wave equation with a local nonlinear dissipation,, Math. Ann., 305 (1996), 403.  doi: 10.1007/BF01444231.  Google Scholar

[14]

H. Nishiyama, Polynomial decay rate for damped wave equations on partially rectangular domains,, Math. Res. Lett., 16 (2009), 881.   Google Scholar

[15]

K. D. Phung, Polynomial decay rate for the dissipative wave equation,, J. Differential Equations, 240 (2007), 92.  doi: 10.1016/j.jde.2007.05.016.  Google Scholar

[16]

K. D. Phung, Boundary stabilization for the wave equation in a bounded cylindrical domain,, Discrete Contin. Dyn. Syst., 20 (2008), 1057.  doi: 10.3934/dcds.2008.20.1057.  Google Scholar

[17]

L. Tcheugoué Tébou, Stabilization of the wave equation with localized nonlinear damping,, J. Differential Equations, 145 (1998), 502.  doi: 10.1006/jdeq.1998.3416.  Google Scholar

[1]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[2]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[3]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[4]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[5]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[6]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[7]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[8]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[9]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[10]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[11]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[12]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[13]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[14]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[15]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[16]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[17]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[18]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[19]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[20]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]