Citation: |
[1] |
C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.doi: 10.1137/0330055. |
[2] |
M. Bellassoued, Decay of solutions of the wave equation with arbitrary localized nonlinear damping, J. Differential Equations, 211 (2005), 303-332.doi: 10.1016/j.jde.2004.12.010. |
[3] |
N. Burq, Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et abscence de résonnance au voisinage du réel, (French) [Decay of the local energy of the wave equation for the exterior problem and absence of resonance near the real axis], Acta. Math., 180 (1998), 1-29.doi: 10.1007/BF02392877. |
[4] |
N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains, Math. Res. Lett., 14 (2007), 35-47. |
[5] |
M. Daoulatli, Rate of decay of solutions of the wave equation with arbitrary localized nonlinear damping, Nonlinear Anal., 73 (2010), 987-1003.doi: 10.1016/j.na.2010.04.026. |
[6] |
X. Fu, Logarithmic decay of hyperbolic equations with arbitrary small boundary damping, Comm. Partial Differential Equations, 34 (2009), 957-975.doi: 10.1080/03605300903116389. |
[7] |
G. Lebeau, Équation des ondes amorties, (French) [Damped wave equation], in "Algebraic and Geometric Methods in Mathematical Physics" (Kaciveli, 1993), Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht, (1996), 73-109. |
[8] |
G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, (French) [Exact control of the heat equation], Comm. Partial Differential Equations, 20 (1995), 335-356.doi: 10.1080/03605309508821097. |
[9] |
G. Lebeau and L. Robbiano, Stabilisation de l'équation des ondes par le bord, Duke Math. J., 86 (1997), 465-491.doi: 10.1215/S0012-7094-97-08614-2. |
[10] |
J.-L. Lions, "Quelques Méthodes de Résolution des Probl\`emes aux Limites Non Linéaires," Dunod, Gauthier-Villars, Paris, 1969. |
[11] |
J.-L. Lions and W. Strauss, Some non-linear evolution equations, Bull. Soc. Math. France, 93 (1965), 43-96. |
[12] |
Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 56 (2005), 630-644.doi: 10.1007/s00033-004-3073-4. |
[13] |
M. Nakao, Decay of solutions of the wave equation with a local nonlinear dissipation, Math. Ann., 305 (1996), 403-417.doi: 10.1007/BF01444231. |
[14] |
H. Nishiyama, Polynomial decay rate for damped wave equations on partially rectangular domains, Math. Res. Lett., 16 (2009), 881-894. |
[15] |
K. D. Phung, Polynomial decay rate for the dissipative wave equation, J. Differential Equations, 240 (2007), 92-124.doi: 10.1016/j.jde.2007.05.016. |
[16] |
K. D. Phung, Boundary stabilization for the wave equation in a bounded cylindrical domain, Discrete Contin. Dyn. Syst., 20 (2008), 1057-1093.doi: 10.3934/dcds.2008.20.1057. |
[17] |
L. Tcheugoué Tébou, Stabilization of the wave equation with localized nonlinear damping, J. Differential Equations, 145 (1998), 502-524.doi: 10.1006/jdeq.1998.3416. |