\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Decay of solutions of the wave equation with localized nonlinear damping and trapped rays

Abstract Related Papers Cited by
  • We prove some decay estimates of the energy of the wave equation governed by localized nonlinear dissipations in a bounded domain in which trapped rays may occur. The approach is based on a comparison with the linear damped wave equation and an interpolation argument. Our result extends to the nonlinear damped wave equation the well-known optimal logarithmic decay rate for the linear damped wave equation with regular initial data.
    Mathematics Subject Classification: Primary: 35L05, 35L71; Secondary: 35B40, 35B35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.doi: 10.1137/0330055.

    [2]

    M. Bellassoued, Decay of solutions of the wave equation with arbitrary localized nonlinear damping, J. Differential Equations, 211 (2005), 303-332.doi: 10.1016/j.jde.2004.12.010.

    [3]

    N. Burq, Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et abscence de résonnance au voisinage du réel, (French) [Decay of the local energy of the wave equation for the exterior problem and absence of resonance near the real axis], Acta. Math., 180 (1998), 1-29.doi: 10.1007/BF02392877.

    [4]

    N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains, Math. Res. Lett., 14 (2007), 35-47.

    [5]

    M. Daoulatli, Rate of decay of solutions of the wave equation with arbitrary localized nonlinear damping, Nonlinear Anal., 73 (2010), 987-1003.doi: 10.1016/j.na.2010.04.026.

    [6]

    X. Fu, Logarithmic decay of hyperbolic equations with arbitrary small boundary damping, Comm. Partial Differential Equations, 34 (2009), 957-975.doi: 10.1080/03605300903116389.

    [7]

    G. Lebeau, Équation des ondes amorties, (French) [Damped wave equation], in "Algebraic and Geometric Methods in Mathematical Physics" (Kaciveli, 1993), Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht, (1996), 73-109.

    [8]

    G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, (French) [Exact control of the heat equation], Comm. Partial Differential Equations, 20 (1995), 335-356.doi: 10.1080/03605309508821097.

    [9]

    G. Lebeau and L. Robbiano, Stabilisation de l'équation des ondes par le bord, Duke Math. J., 86 (1997), 465-491.doi: 10.1215/S0012-7094-97-08614-2.

    [10]

    J.-L. Lions, "Quelques Méthodes de Résolution des Probl\`emes aux Limites Non Linéaires," Dunod, Gauthier-Villars, Paris, 1969.

    [11]

    J.-L. Lions and W. Strauss, Some non-linear evolution equations, Bull. Soc. Math. France, 93 (1965), 43-96.

    [12]

    Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 56 (2005), 630-644.doi: 10.1007/s00033-004-3073-4.

    [13]

    M. Nakao, Decay of solutions of the wave equation with a local nonlinear dissipation, Math. Ann., 305 (1996), 403-417.doi: 10.1007/BF01444231.

    [14]

    H. Nishiyama, Polynomial decay rate for damped wave equations on partially rectangular domains, Math. Res. Lett., 16 (2009), 881-894.

    [15]

    K. D. Phung, Polynomial decay rate for the dissipative wave equation, J. Differential Equations, 240 (2007), 92-124.doi: 10.1016/j.jde.2007.05.016.

    [16]

    K. D. Phung, Boundary stabilization for the wave equation in a bounded cylindrical domain, Discrete Contin. Dyn. Syst., 20 (2008), 1057-1093.doi: 10.3934/dcds.2008.20.1057.

    [17]

    L. Tcheugoué Tébou, Stabilization of the wave equation with localized nonlinear damping, J. Differential Equations, 145 (1998), 502-524.doi: 10.1006/jdeq.1998.3416.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(79) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return