June  2011, 1(2): 251-265. doi: 10.3934/mcrf.2011.1.251

Decay of solutions of the wave equation with localized nonlinear damping and trapped rays

1. 

Yangtze Center of Mathematics, Sichuan University, Chengdu 610064

Received  November 2010 Revised  April 2011 Published  June 2011

We prove some decay estimates of the energy of the wave equation governed by localized nonlinear dissipations in a bounded domain in which trapped rays may occur. The approach is based on a comparison with the linear damped wave equation and an interpolation argument. Our result extends to the nonlinear damped wave equation the well-known optimal logarithmic decay rate for the linear damped wave equation with regular initial data.
Citation: Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control and Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251
References:
[1]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065. doi: 10.1137/0330055.

[2]

M. Bellassoued, Decay of solutions of the wave equation with arbitrary localized nonlinear damping, J. Differential Equations, 211 (2005), 303-332. doi: 10.1016/j.jde.2004.12.010.

[3]

N. Burq, Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et abscence de résonnance au voisinage du réel, (French) [Decay of the local energy of the wave equation for the exterior problem and absence of resonance near the real axis], Acta. Math., 180 (1998), 1-29. doi: 10.1007/BF02392877.

[4]

N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains, Math. Res. Lett., 14 (2007), 35-47.

[5]

M. Daoulatli, Rate of decay of solutions of the wave equation with arbitrary localized nonlinear damping, Nonlinear Anal., 73 (2010), 987-1003. doi: 10.1016/j.na.2010.04.026.

[6]

X. Fu, Logarithmic decay of hyperbolic equations with arbitrary small boundary damping, Comm. Partial Differential Equations, 34 (2009), 957-975. doi: 10.1080/03605300903116389.

[7]

G. Lebeau, Équation des ondes amorties, (French) [Damped wave equation], in "Algebraic and Geometric Methods in Mathematical Physics" (Kaciveli, 1993), Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht, (1996), 73-109.

[8]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, (French) [Exact control of the heat equation], Comm. Partial Differential Equations, 20 (1995), 335-356. doi: 10.1080/03605309508821097.

[9]

G. Lebeau and L. Robbiano, Stabilisation de l'équation des ondes par le bord, Duke Math. J., 86 (1997), 465-491. doi: 10.1215/S0012-7094-97-08614-2.

[10]

J.-L. Lions, "Quelques Méthodes de Résolution des Probl\`emes aux Limites Non Linéaires," Dunod, Gauthier-Villars, Paris, 1969.

[11]

J.-L. Lions and W. Strauss, Some non-linear evolution equations, Bull. Soc. Math. France, 93 (1965), 43-96.

[12]

Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 56 (2005), 630-644. doi: 10.1007/s00033-004-3073-4.

[13]

M. Nakao, Decay of solutions of the wave equation with a local nonlinear dissipation, Math. Ann., 305 (1996), 403-417. doi: 10.1007/BF01444231.

[14]

H. Nishiyama, Polynomial decay rate for damped wave equations on partially rectangular domains, Math. Res. Lett., 16 (2009), 881-894.

[15]

K. D. Phung, Polynomial decay rate for the dissipative wave equation, J. Differential Equations, 240 (2007), 92-124. doi: 10.1016/j.jde.2007.05.016.

[16]

K. D. Phung, Boundary stabilization for the wave equation in a bounded cylindrical domain, Discrete Contin. Dyn. Syst., 20 (2008), 1057-1093. doi: 10.3934/dcds.2008.20.1057.

[17]

L. Tcheugoué Tébou, Stabilization of the wave equation with localized nonlinear damping, J. Differential Equations, 145 (1998), 502-524. doi: 10.1006/jdeq.1998.3416.

show all references

References:
[1]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065. doi: 10.1137/0330055.

[2]

M. Bellassoued, Decay of solutions of the wave equation with arbitrary localized nonlinear damping, J. Differential Equations, 211 (2005), 303-332. doi: 10.1016/j.jde.2004.12.010.

[3]

N. Burq, Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et abscence de résonnance au voisinage du réel, (French) [Decay of the local energy of the wave equation for the exterior problem and absence of resonance near the real axis], Acta. Math., 180 (1998), 1-29. doi: 10.1007/BF02392877.

[4]

N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains, Math. Res. Lett., 14 (2007), 35-47.

[5]

M. Daoulatli, Rate of decay of solutions of the wave equation with arbitrary localized nonlinear damping, Nonlinear Anal., 73 (2010), 987-1003. doi: 10.1016/j.na.2010.04.026.

[6]

X. Fu, Logarithmic decay of hyperbolic equations with arbitrary small boundary damping, Comm. Partial Differential Equations, 34 (2009), 957-975. doi: 10.1080/03605300903116389.

[7]

G. Lebeau, Équation des ondes amorties, (French) [Damped wave equation], in "Algebraic and Geometric Methods in Mathematical Physics" (Kaciveli, 1993), Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht, (1996), 73-109.

[8]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, (French) [Exact control of the heat equation], Comm. Partial Differential Equations, 20 (1995), 335-356. doi: 10.1080/03605309508821097.

[9]

G. Lebeau and L. Robbiano, Stabilisation de l'équation des ondes par le bord, Duke Math. J., 86 (1997), 465-491. doi: 10.1215/S0012-7094-97-08614-2.

[10]

J.-L. Lions, "Quelques Méthodes de Résolution des Probl\`emes aux Limites Non Linéaires," Dunod, Gauthier-Villars, Paris, 1969.

[11]

J.-L. Lions and W. Strauss, Some non-linear evolution equations, Bull. Soc. Math. France, 93 (1965), 43-96.

[12]

Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 56 (2005), 630-644. doi: 10.1007/s00033-004-3073-4.

[13]

M. Nakao, Decay of solutions of the wave equation with a local nonlinear dissipation, Math. Ann., 305 (1996), 403-417. doi: 10.1007/BF01444231.

[14]

H. Nishiyama, Polynomial decay rate for damped wave equations on partially rectangular domains, Math. Res. Lett., 16 (2009), 881-894.

[15]

K. D. Phung, Polynomial decay rate for the dissipative wave equation, J. Differential Equations, 240 (2007), 92-124. doi: 10.1016/j.jde.2007.05.016.

[16]

K. D. Phung, Boundary stabilization for the wave equation in a bounded cylindrical domain, Discrete Contin. Dyn. Syst., 20 (2008), 1057-1093. doi: 10.3934/dcds.2008.20.1057.

[17]

L. Tcheugoué Tébou, Stabilization of the wave equation with localized nonlinear damping, J. Differential Equations, 145 (1998), 502-524. doi: 10.1006/jdeq.1998.3416.

[1]

Huafei Di, Yadong Shang, Jiali Yu. Existence and uniform decay estimates for the fourth order wave equation with nonlinear boundary damping and interior source. Electronic Research Archive, 2020, 28 (1) : 221-261. doi: 10.3934/era.2020015

[2]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[3]

Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459

[4]

Aníbal Rodríguez-Bernal, Enrique Zuazua. Parabolic singular limit of a wave equation with localized boundary damping. Discrete and Continuous Dynamical Systems, 1995, 1 (3) : 303-346. doi: 10.3934/dcds.1995.1.303

[5]

Takeshi Taniguchi. Exponential boundary stabilization for nonlinear wave equations with localized damping and nonlinear boundary condition. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1571-1585. doi: 10.3934/cpaa.2017075

[6]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[7]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure and Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[8]

Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021

[9]

Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029

[10]

Louis Tebou. Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Mathematical Control and Related Fields, 2012, 2 (1) : 45-60. doi: 10.3934/mcrf.2012.2.45

[11]

Tae Gab Ha. On viscoelastic wave equation with nonlinear boundary damping and source term. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1543-1576. doi: 10.3934/cpaa.2010.9.1543

[12]

Zhiqing Liu, Zhong Bo Fang. Global solvability and general decay of a transmission problem for kirchhoff-type wave equations with nonlinear damping and delay term. Communications on Pure and Applied Analysis, 2020, 19 (2) : 941-966. doi: 10.3934/cpaa.2020043

[13]

Claudianor O. Alves, M. M. Cavalcanti, Valeria N. Domingos Cavalcanti, Mohammad A. Rammaha, Daniel Toundykov. On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 583-608. doi: 10.3934/dcdss.2009.2.583

[14]

Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023

[15]

To Fu Ma, Paulo Nicanor Seminario-Huertas. Attractors for semilinear wave equations with localized damping and external forces. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2219-2233. doi: 10.3934/cpaa.2020097

[16]

Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407

[17]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

[18]

Jeong Ja Bae, Mitsuhiro Nakao. Existence problem for the Kirchhoff type wave equation with a localized weakly nonlinear dissipation in exterior domains. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 731-743. doi: 10.3934/dcds.2004.11.731

[19]

Gongwei Liu. The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term. Electronic Research Archive, 2020, 28 (1) : 263-289. doi: 10.3934/era.2020016

[20]

Mohammad Al-Gharabli, Mohamed Balegh, Baowei Feng, Zayd Hajjej, Salim A. Messaoudi. Existence and general decay of Balakrishnan-Taylor viscoelastic equation with nonlinear frictional damping and logarithmic source term. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021038

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (74)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]