September  2011, 1(3): 267-306. doi: 10.3934/mcrf.2011.1.267

Recent results on the controllability of linear coupled parabolic problems: A survey

1. 

Laboratoire de Mathématiques, Université de Franche-Comté, 16 route de Gray, 25030 Besancon cedex, France

2. 

Centre de Mathématiques et Informatique, Université Aix-Marseille 1, Technopôle Château-Gombert, 39, rue F. Joliot Curie, 13453 Marseille Cedex 13, France

3. 

Dpto. E.D.A.N., University of Sevilla, Aptdo. 1160, 41080 Sevilla

4. 

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Mexico

Received  April 2011 Revised  July 2011 Published  September 2011

This paper tries to summarize recent results on the controllability of systems of (several) parabolic equations. The emphasis is placed on the extension of the Kalman rank condition (for finite dimensional systems of differential equations) to parabolic systems. This question is itself tied with the proof of global Carleman estimates for systems and leads to a wide field of open problems.
Citation: Farid Ammar-Khodja, Assia Benabdallah, Manuel González-Burgos, Luz de Teresa. Recent results on the controllability of linear coupled parabolic problems: A survey. Mathematical Control and Related Fields, 2011, 1 (3) : 267-306. doi: 10.3934/mcrf.2011.1.267
References:
[1]

F. Alabau-Boussouira and M. Léautaud, Indirect controllability of locally coupled systems under geometric conditions, C. R. Acad. Sci. Paris, 349 (2011), 395-400.

[2]

F. Ammar Khodja, A. Benabdallah and C. Dupaix, Null-controllability of some reaction-diffusion systems with one control force, J. Math. Anal. Appl., 320 (2006), 928-943. doi: 10.1016/j.jmaa.2005.07.060.

[3]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and I. Kostin, Controllability to the trajectories of phase-field models by one control force, SIAM J. Control Optim., 42 (2003), 1661-1680. doi: 10.1137/S0363012902417826.

[4]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and I. Kostin, Null controllability of some systems of parabolic type by one control force, ESAIM Control Optim. Calc. Var., 11 (2005), 426-448. doi: 10.1051/cocv:2005013.

[5]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differ. Equ. Appl., 1 (2009), 427-457.

[6]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems, J. Evol. Equ., 9 (2009), 267-291. doi: 10.1007/s00028-009-0008-8.

[7]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials, to appear in J. Math. Pures Appl. doi: 10.1016/j.matpur.2011.06.005.

[8]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, A Kalman condition for the boundary approximate controllability of non scalar parabolic problems with diffusion matrices, in preparation.

[9]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Condensation index and necessary and sufficient conditions for the null controllability of abstract systems. Application to the boundary null controllability of coupled parabolic systems, in preparation.

[10]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.

[11]

A. Benabdallah, M. Cristofol, P. Gaitan and L. de Teresa, A new Carleman inequality for parabolic systems with a single observation and applications, C. R. Math. Acad. Sci. Paris, 348 (2010), 25-29.

[12]

A. Benabdallah and M. G. Naso, Null controllability of a thermoelastic plate, Abstr. Appl. Anal., 7 (2002), 585-599. doi: 10.1155/S108533750220408X.

[13]

O. Bodart and C. Fabre, Controls insensitizing the norm of the solution of a semilinear heat equation, J. Math. Anal. Appl., 195 (1995), 658-683. doi: 10.1006/jmaa.1995.1382.

[14]

O. Bodart, M. González-Burgos and R. Pérez-García, Existence of insensitizing controls for a semilinear heat equation with a superlinear nonlinearity, Comm. Partial Differential Equations, 29 (2004), 1017-1050.

[15]

O. Bodart, M. González-Burgos and R. Pérez-García, Insensitizing controls for a heat equation with a nonlinear term involving the state and the gradient, Nonlinear Anal., 57 (2004), 687-711. doi: 10.1016/j.na.2004.03.012.

[16]

D. Bothe and D. Hilhorst, A reaction-diffusion system with fast reversible reaction, J. Math. Anal. Appl., 286 (2003), 125-135. doi: 10.1016/S0022-247X(03)00457-8.

[17]

T. Carleman, Sur une problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Mat., Astr. Fys., 26 (1939), 9 pp.

[18]

M. Chapouly, "Contrôlabilité d'Équations Issues de la Mécanique des Fluides," Thèse pour obtenir le grade de Docteur en Mathématiques, Université de Paris 11, 2009.

[19]

J.-M. Coron, On the controllability of the $2$-D incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM Contrôle Optim. Calc. Var., 1 (1995/96), 35-75 (electronic).

[20]

J.-M. Coron, "Control and Nonlinearity," Mathematical Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007.

[21]

J.-M. Coron and S. Guerrero, Null controllability of the $N$-dimensional Stokes system with $N-1$ scalar controls, J. Differential Equations, 246 (2009), 2908-2921.

[22]

J.-M. Coron, S. Guerrero and L. Rosier, Null controllability of a parabolic system with a cubic coupling term, SIAM J. Control Optim., 48 (2010), 5629-5653. doi: 10.1137/100784539.

[23]

R. Dáger, Insensitizing controls for the 1-D wave equation, SIAM J. Control Optim., 45 (2006), 1758-1768. doi: 10.1137/060654372.

[24]

S. Dolecki and D. L. Russell, A general theory of observation and control, SIAM J. Control Optim., 15 (1977), 185-220. doi: 10.1137/0315015.

[25]

A. Doubova, E. Fernández-Cara, M. González-Burgos and E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim., 41 (2002), 798-819. doi: 10.1137/S0363012901386465.

[26]

P. Érdi and J. Tóth, "Mathematical Models of Chemical Reactions. Theory and Applications of Deterministic and Stochastic Models," Nonlinear Science: Theory and Applications, Princeton University Press, Princeton, NJ, 1989.

[27]

H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal., 43 (1971), 272-292.

[28]

H. O. Fattorini and D. L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math., 32 (1974/75), 45-69.

[29]

E. Fernández-Cara, Some controllability results in fluid mechanics, in "Partial Differential Equations and Fluid Mechanics," 64-80, London Math. Soc. Lecture Note Ser., 364, Cambridge Univ. Press, Cambridge, 2009.

[30]

E. Fernández-Cara, G. García and A. Osses, Controls insensitizing the observation of a quasi-geostrophic ocean model, SIAM J. Control and Optim., 43 (2005), 1616-1639.

[31]

E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability, SIAM J. Control Optim., 45 (2006), 1399-1446.

[32]

E. Fernández-Cara, M. González-Burgos and L. de Teresa, Boundary controllability of parabolic coupled equations, J. Funct. Anal., 259 (2010), 1720-1758. doi: 10.1016/j.jfa.2010.06.003.

[33]

E. Fernández-Cara, M. González-Burgos and L. de Teresa, Controllability of linear and semilinear non-diagonalizable parabolic systems, in preparation.

[34]

E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl. (9), 83 (2004), 1501-1542.

[35]

E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov, J.-P. Puel, Some controllability results for the $N$ -dimensional Navier-Stokes and Boussinesq systems with $N-1$ scalar controls, SIAM J. Control Optim., 45 (2006), 146-173. doi: 10.1137/04061965X.

[36]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 583-616.

[37]

E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations, 5 (2000), 465-514.

[38]

A. Fursikov and O. Yu. Imanuvilov, Exact controllability of the Navier-Stokes and Boussinesq equations, (Russian) Uspekhi Mat. Nauk, 54 (1999), 93-146; translation in Russian Math. Surveys, 54 (1999), 565-618

[39]

A. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolution Equations," Lecture Notes Series, 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.

[40]

M. González-Burgos and R. Pérez-García, Controllability results for some nonlinear coupled parabolic systems by one control force, Asymptot. Anal., 46 (2006), 123-162.

[41]

M. González-Burgos and L. de Teresa, Controllability results for cascade systems of $m$ coupled parabolic PDEs by one control force, Port. Math., 67 (2010), 91-113.

[42]

S. Guerrero, Null controllability of some systems of two parabolic equations with one control force, SIAM J. Control Optim., 46 (2007), 379-394. doi: 10.1137/060653135.

[43]

S. Guerrero, Controllability of systems of Stokes equations with one control force: Existence of insensitizing controls, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 1029-1054.

[44]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.

[45]

L. Hörmander, "Linear Partial Differential Operators," Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.

[46]

L. Hörmander, "The Analysis of Linear Partial Differential Operators. IV. Fourier Integral Operators," Corrected reprint of the 1985 original, Grundlehren der Mathematischen Wissenschaften, 275, Springer-Verlag, Berlin, 1994.

[47]

O. Yu. Imanuvilov and M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, Publ. Res. Inst. Math. Sci., 39 (2003), 227-274. doi: 10.2977/prims/1145476103.

[48]

O. Kavian and L. de Teresa, Unique continuation principle for systems of parabolic equations, ESAIM Control Optim. Calc. Var., 16 (2010), 247-274. doi: 10.1051/cocv/2008077.

[49]

D. Lauffenburger, R. Aris and K. Keller, Effects of cell motility and chemotaxis on microbial population growth, Biophysical Journal, 40 (1982), 209-219. doi: 10.1016/S0006-3495(82)84476-7.

[50]

O. A. Ladyženskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, RI, 1967.

[51]

J. E. Lagnese, The reachability problem for thermoelastic plates, Arch. Rational Mech. Anal., 112 (1990), 223-267. doi: 10.1007/BF00381235.

[52]

J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, to appear in ESAIM Control Optim. Calc. Var.

[53]

M. Léautaud, Spectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability of parabolic systems, J. Funct. Anal., 258 (2010), 2739-2778. doi: 10.1016/j.jfa.2009.10.011.

[54]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356.

[55]

G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity, Arch. Rational Mech. Anal., 141 (1998), 297-329. doi: 10.1007/s002050050078.

[56]

J.-L. Lions, Remarques préliminaires sur le contrôle des systèmes à données incomplètes, in "Actas del Congreso de Ecuaciones Diferenciales y Aplicaciones (CEDYA)," Universidad de Málaga, (1989), 43-54.

[57]

F. Luca and L. de Teresa, System controllability and Diophantine approximations, preprint.

[58]

D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Studies in Appl. Math., 52 (1973), 189-211.

[59]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739. doi: 10.1137/1020095.

[60]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83-99. doi: 10.1016/0022-5193(79)90258-3.

[61]

L. M. Silverman and H. E. Meadows, Controllability and observability in time-variable linear systems, SIAM J. Control, 5 (1967), 64-73. doi: 10.1137/0305005.

[62]

L. Tebou, Locally distributed desensitizing controls for the wave equation, C. R. Math. Acad. Sci. Paris, 346 (2008), 407-412.

[63]

L. de Teresa, Insensitizing controls for a semilinear heat equation, Comm. Partial Differential Equations, 25 (2000), 39-72.

[64]

L. de Teresa and E. Zuazua, Identification of the class of initial data for the insensitizing control of the heat equation, Commun. Pure Appl. Anal., 8 (2009), 457-471. doi: 10.3934/cpaa.2009.8.457.

[65]

R. Triggiani, Extensions of rank conditions for controllability and observability to Banach spaces and unbounded operators, SIAM J. Control Optimizaton, 14 (1976), 313-338. doi: 10.1137/0314022.

[66]

M. Tucsnak and G. Weiss, "Observation and Control for Operator Semigroups," Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009.

[67]

J. Zabczyk, "Mathematical Control Theory: An Introduction," Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, 1992.

show all references

References:
[1]

F. Alabau-Boussouira and M. Léautaud, Indirect controllability of locally coupled systems under geometric conditions, C. R. Acad. Sci. Paris, 349 (2011), 395-400.

[2]

F. Ammar Khodja, A. Benabdallah and C. Dupaix, Null-controllability of some reaction-diffusion systems with one control force, J. Math. Anal. Appl., 320 (2006), 928-943. doi: 10.1016/j.jmaa.2005.07.060.

[3]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and I. Kostin, Controllability to the trajectories of phase-field models by one control force, SIAM J. Control Optim., 42 (2003), 1661-1680. doi: 10.1137/S0363012902417826.

[4]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and I. Kostin, Null controllability of some systems of parabolic type by one control force, ESAIM Control Optim. Calc. Var., 11 (2005), 426-448. doi: 10.1051/cocv:2005013.

[5]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differ. Equ. Appl., 1 (2009), 427-457.

[6]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems, J. Evol. Equ., 9 (2009), 267-291. doi: 10.1007/s00028-009-0008-8.

[7]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials, to appear in J. Math. Pures Appl. doi: 10.1016/j.matpur.2011.06.005.

[8]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, A Kalman condition for the boundary approximate controllability of non scalar parabolic problems with diffusion matrices, in preparation.

[9]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Condensation index and necessary and sufficient conditions for the null controllability of abstract systems. Application to the boundary null controllability of coupled parabolic systems, in preparation.

[10]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.

[11]

A. Benabdallah, M. Cristofol, P. Gaitan and L. de Teresa, A new Carleman inequality for parabolic systems with a single observation and applications, C. R. Math. Acad. Sci. Paris, 348 (2010), 25-29.

[12]

A. Benabdallah and M. G. Naso, Null controllability of a thermoelastic plate, Abstr. Appl. Anal., 7 (2002), 585-599. doi: 10.1155/S108533750220408X.

[13]

O. Bodart and C. Fabre, Controls insensitizing the norm of the solution of a semilinear heat equation, J. Math. Anal. Appl., 195 (1995), 658-683. doi: 10.1006/jmaa.1995.1382.

[14]

O. Bodart, M. González-Burgos and R. Pérez-García, Existence of insensitizing controls for a semilinear heat equation with a superlinear nonlinearity, Comm. Partial Differential Equations, 29 (2004), 1017-1050.

[15]

O. Bodart, M. González-Burgos and R. Pérez-García, Insensitizing controls for a heat equation with a nonlinear term involving the state and the gradient, Nonlinear Anal., 57 (2004), 687-711. doi: 10.1016/j.na.2004.03.012.

[16]

D. Bothe and D. Hilhorst, A reaction-diffusion system with fast reversible reaction, J. Math. Anal. Appl., 286 (2003), 125-135. doi: 10.1016/S0022-247X(03)00457-8.

[17]

T. Carleman, Sur une problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Mat., Astr. Fys., 26 (1939), 9 pp.

[18]

M. Chapouly, "Contrôlabilité d'Équations Issues de la Mécanique des Fluides," Thèse pour obtenir le grade de Docteur en Mathématiques, Université de Paris 11, 2009.

[19]

J.-M. Coron, On the controllability of the $2$-D incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM Contrôle Optim. Calc. Var., 1 (1995/96), 35-75 (electronic).

[20]

J.-M. Coron, "Control and Nonlinearity," Mathematical Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007.

[21]

J.-M. Coron and S. Guerrero, Null controllability of the $N$-dimensional Stokes system with $N-1$ scalar controls, J. Differential Equations, 246 (2009), 2908-2921.

[22]

J.-M. Coron, S. Guerrero and L. Rosier, Null controllability of a parabolic system with a cubic coupling term, SIAM J. Control Optim., 48 (2010), 5629-5653. doi: 10.1137/100784539.

[23]

R. Dáger, Insensitizing controls for the 1-D wave equation, SIAM J. Control Optim., 45 (2006), 1758-1768. doi: 10.1137/060654372.

[24]

S. Dolecki and D. L. Russell, A general theory of observation and control, SIAM J. Control Optim., 15 (1977), 185-220. doi: 10.1137/0315015.

[25]

A. Doubova, E. Fernández-Cara, M. González-Burgos and E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim., 41 (2002), 798-819. doi: 10.1137/S0363012901386465.

[26]

P. Érdi and J. Tóth, "Mathematical Models of Chemical Reactions. Theory and Applications of Deterministic and Stochastic Models," Nonlinear Science: Theory and Applications, Princeton University Press, Princeton, NJ, 1989.

[27]

H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal., 43 (1971), 272-292.

[28]

H. O. Fattorini and D. L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math., 32 (1974/75), 45-69.

[29]

E. Fernández-Cara, Some controllability results in fluid mechanics, in "Partial Differential Equations and Fluid Mechanics," 64-80, London Math. Soc. Lecture Note Ser., 364, Cambridge Univ. Press, Cambridge, 2009.

[30]

E. Fernández-Cara, G. García and A. Osses, Controls insensitizing the observation of a quasi-geostrophic ocean model, SIAM J. Control and Optim., 43 (2005), 1616-1639.

[31]

E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability, SIAM J. Control Optim., 45 (2006), 1399-1446.

[32]

E. Fernández-Cara, M. González-Burgos and L. de Teresa, Boundary controllability of parabolic coupled equations, J. Funct. Anal., 259 (2010), 1720-1758. doi: 10.1016/j.jfa.2010.06.003.

[33]

E. Fernández-Cara, M. González-Burgos and L. de Teresa, Controllability of linear and semilinear non-diagonalizable parabolic systems, in preparation.

[34]

E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl. (9), 83 (2004), 1501-1542.

[35]

E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov, J.-P. Puel, Some controllability results for the $N$ -dimensional Navier-Stokes and Boussinesq systems with $N-1$ scalar controls, SIAM J. Control Optim., 45 (2006), 146-173. doi: 10.1137/04061965X.

[36]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 583-616.

[37]

E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations, 5 (2000), 465-514.

[38]

A. Fursikov and O. Yu. Imanuvilov, Exact controllability of the Navier-Stokes and Boussinesq equations, (Russian) Uspekhi Mat. Nauk, 54 (1999), 93-146; translation in Russian Math. Surveys, 54 (1999), 565-618

[39]

A. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolution Equations," Lecture Notes Series, 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.

[40]

M. González-Burgos and R. Pérez-García, Controllability results for some nonlinear coupled parabolic systems by one control force, Asymptot. Anal., 46 (2006), 123-162.

[41]

M. González-Burgos and L. de Teresa, Controllability results for cascade systems of $m$ coupled parabolic PDEs by one control force, Port. Math., 67 (2010), 91-113.

[42]

S. Guerrero, Null controllability of some systems of two parabolic equations with one control force, SIAM J. Control Optim., 46 (2007), 379-394. doi: 10.1137/060653135.

[43]

S. Guerrero, Controllability of systems of Stokes equations with one control force: Existence of insensitizing controls, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 1029-1054.

[44]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.

[45]

L. Hörmander, "Linear Partial Differential Operators," Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.

[46]

L. Hörmander, "The Analysis of Linear Partial Differential Operators. IV. Fourier Integral Operators," Corrected reprint of the 1985 original, Grundlehren der Mathematischen Wissenschaften, 275, Springer-Verlag, Berlin, 1994.

[47]

O. Yu. Imanuvilov and M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, Publ. Res. Inst. Math. Sci., 39 (2003), 227-274. doi: 10.2977/prims/1145476103.

[48]

O. Kavian and L. de Teresa, Unique continuation principle for systems of parabolic equations, ESAIM Control Optim. Calc. Var., 16 (2010), 247-274. doi: 10.1051/cocv/2008077.

[49]

D. Lauffenburger, R. Aris and K. Keller, Effects of cell motility and chemotaxis on microbial population growth, Biophysical Journal, 40 (1982), 209-219. doi: 10.1016/S0006-3495(82)84476-7.

[50]

O. A. Ladyženskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, RI, 1967.

[51]

J. E. Lagnese, The reachability problem for thermoelastic plates, Arch. Rational Mech. Anal., 112 (1990), 223-267. doi: 10.1007/BF00381235.

[52]

J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, to appear in ESAIM Control Optim. Calc. Var.

[53]

M. Léautaud, Spectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability of parabolic systems, J. Funct. Anal., 258 (2010), 2739-2778. doi: 10.1016/j.jfa.2009.10.011.

[54]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356.

[55]

G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity, Arch. Rational Mech. Anal., 141 (1998), 297-329. doi: 10.1007/s002050050078.

[56]

J.-L. Lions, Remarques préliminaires sur le contrôle des systèmes à données incomplètes, in "Actas del Congreso de Ecuaciones Diferenciales y Aplicaciones (CEDYA)," Universidad de Málaga, (1989), 43-54.

[57]

F. Luca and L. de Teresa, System controllability and Diophantine approximations, preprint.

[58]

D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Studies in Appl. Math., 52 (1973), 189-211.

[59]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739. doi: 10.1137/1020095.

[60]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83-99. doi: 10.1016/0022-5193(79)90258-3.

[61]

L. M. Silverman and H. E. Meadows, Controllability and observability in time-variable linear systems, SIAM J. Control, 5 (1967), 64-73. doi: 10.1137/0305005.

[62]

L. Tebou, Locally distributed desensitizing controls for the wave equation, C. R. Math. Acad. Sci. Paris, 346 (2008), 407-412.

[63]

L. de Teresa, Insensitizing controls for a semilinear heat equation, Comm. Partial Differential Equations, 25 (2000), 39-72.

[64]

L. de Teresa and E. Zuazua, Identification of the class of initial data for the insensitizing control of the heat equation, Commun. Pure Appl. Anal., 8 (2009), 457-471. doi: 10.3934/cpaa.2009.8.457.

[65]

R. Triggiani, Extensions of rank conditions for controllability and observability to Banach spaces and unbounded operators, SIAM J. Control Optimizaton, 14 (1976), 313-338. doi: 10.1137/0314022.

[66]

M. Tucsnak and G. Weiss, "Observation and Control for Operator Semigroups," Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009.

[67]

J. Zabczyk, "Mathematical Control Theory: An Introduction," Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, 1992.

[1]

Sergei Avdonin, Jeff Park, Luz de Teresa. The Kalman condition for the boundary controllability of coupled 1-d wave equations. Evolution Equations and Control Theory, 2020, 9 (1) : 255-273. doi: 10.3934/eect.2020005

[2]

Hamid Maarouf. Local Kalman rank condition for linear time varying systems. Mathematical Control and Related Fields, 2022, 12 (2) : 433-446. doi: 10.3934/mcrf.2021029

[3]

Felipe Wallison Chaves-Silva, Sergio Guerrero, Jean Pierre Puel. Controllability of fast diffusion coupled parabolic systems. Mathematical Control and Related Fields, 2014, 4 (4) : 465-479. doi: 10.3934/mcrf.2014.4.465

[4]

Guillaume Olive. Boundary approximate controllability of some linear parabolic systems. Evolution Equations and Control Theory, 2014, 3 (1) : 167-189. doi: 10.3934/eect.2014.3.167

[5]

Farid Ammar Khodja, Franz Chouly, Michel Duprez. Partial null controllability of parabolic linear systems. Mathematical Control and Related Fields, 2016, 6 (2) : 185-216. doi: 10.3934/mcrf.2016001

[6]

Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control and Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037

[7]

Peter Šepitka. Riccati equations for linear Hamiltonian systems without controllability condition. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1685-1730. doi: 10.3934/dcds.2019074

[8]

Ait Ben Hassi El Mustapha, Fadili Mohamed, Maniar Lahcen. On Algebraic condition for null controllability of some coupled degenerate systems. Mathematical Control and Related Fields, 2019, 9 (1) : 77-95. doi: 10.3934/mcrf.2019004

[9]

Thuy N. T. Nguyen. Uniform controllability of semidiscrete approximations for parabolic systems in Banach spaces. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 613-640. doi: 10.3934/dcdsb.2015.20.613

[10]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations and Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[11]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 555-566. doi: 10.3934/naco.2020055

[12]

Brahim Allal, Genni Fragnelli, Jawad Salhi*. Controllability for degenerate/singular parabolic systems involving memory terms. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022071

[13]

Larbi Berrahmoune. Null controllability for distributed systems with time-varying constraint and applications to parabolic-like equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3275-3303. doi: 10.3934/dcdsb.2020062

[14]

Assia Benabdallah, Michel Cristofol, Patricia Gaitan, Luz de Teresa. Controllability to trajectories for some parabolic systems of three and two equations by one control force. Mathematical Control and Related Fields, 2014, 4 (1) : 17-44. doi: 10.3934/mcrf.2014.4.17

[15]

Franck Boyer, Guillaume Olive. Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients. Mathematical Control and Related Fields, 2014, 4 (3) : 263-287. doi: 10.3934/mcrf.2014.4.263

[16]

Damien Allonsius, Franck Boyer. Boundary null-controllability of semi-discrete coupled parabolic systems in some multi-dimensional geometries. Mathematical Control and Related Fields, 2020, 10 (2) : 217-256. doi: 10.3934/mcrf.2019037

[17]

Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control and Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1

[18]

John E. Lagnese. Controllability of systems of interconnected membranes. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 17-33. doi: 10.3934/dcds.1995.1.17

[19]

Yassine El Gantouh, Said Hadd, Abdelaziz Rhandi. Approximate controllability of network systems. Evolution Equations and Control Theory, 2021, 10 (4) : 749-766. doi: 10.3934/eect.2020091

[20]

Brahim Allal, Abdelkarim Hajjaj, Lahcen Maniar, Jawad Salhi. Null controllability for singular cascade systems of $ n $-coupled degenerate parabolic equations by one control force. Evolution Equations and Control Theory, 2021, 10 (3) : 545-573. doi: 10.3934/eect.2020080

2021 Impact Factor: 1.141

Metrics

  • PDF downloads (262)
  • HTML views (0)
  • Cited by (69)

[Back to Top]