Citation: |
[1] |
K. Ammari and M. Jellouli, Stabilization of star-shaped networks of strings, Differential Integral Equations, 17 (2004), 1395-1410. |
[2] |
S. Avdonin, G. Leugering and V. Mikhaylov, On an inverse problem for tree-like networks of elastic strings, ZAMM Z. Angew. Math. Mech., 90 (2010), 136-150.doi: 10.1002/zamm.200900295. |
[3] |
L. Baudouin, A. Mercado and A. Osses, A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem, Inverse Problems, 23 (2007), 257-278.doi: 10.1088/0266-5611/23/1/014. |
[4] |
M. I. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method, Inverse Problems, 20 (2004), 647-672.doi: 10.1088/0266-5611/20/3/002. |
[5] |
M. Bellassoued, Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients, Appl. Anal., 83 (2004), 983-1014.doi: 10.1080/0003681042000221678. |
[6] |
A. Benabdallah, Y. Dermenjian and J. Le Rousseau, Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem, J. Math. Anal. Appl., 336 (2007), 865-887.doi: 10.1016/j.jmaa.2007.03.024. |
[7] |
A. L. Bukhgeim, "Volterra Equations and Inverse Problems," Inverse and Ill-Posed Problems Series, VSP, Utrecht, 1999. |
[8] |
A. L. Bukhgeĭm and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR, 260 (1981), 269-272. |
[9] |
R. Dáger, Observation and control of vibrations in tree-shaped networks of strings, SIAM J. Control Optim., 43 (2004), 590-623 (electronic).doi: 10.1137/S0363012903421844. |
[10] |
R. Dáger and E. Zuazua, Controllability of star-shaped networks of strings, In "Mathematical and Numerical Aspects of Wave Propagation" (Santiago de Compostela, 2000), 1006-1010, SIAM, Philadelphia, PA, 2000. |
[11] |
R. Dáger and E. Zuazua, "Wave Propagation, Observation and Control in $1\text{-}d$ Flexible Multi-Structures," Mathématiques & Applications (Berlin), 50, Springer-Verlag, Berlin, 2006. |
[12] |
O. Y. Imanuvilov and M. Yamamoto, Determination of a coefficient in an acoustic equation with a single measurement, Inverse Problems, 19 (2003), 157-171.doi: 10.1088/0266-5611/19/1/309. |
[13] |
Oleg Yu. Imanuvilov and Masahiro Yamamoto, Global uniqueness and stability in determining coefficients of wave equations, Comm. Partial Differential Equations, 26 (2001), 1409-1425. |
[14] |
V. Isakov, "Inverse Problems for Partial Differential Equations," second edition, Applied Mathematical Sciences, 127, Springer, New York, 2006. |
[15] |
M. V. Klibanov, Inverse problems and Carleman estimates, Inverse Problems, 8 (1992), 575-596.doi: 10.1088/0266-5611/8/4/009. |
[16] |
M. V. Klibanov and J. Malinsky, Newton-Kantorovich method for three-dimensional potential inverse scattering problem and stability of the hyperbolic Cauchy problem with time-dependent data, Inverse Problems, 7 (1991), 577-596.doi: 10.1088/0266-5611/7/4/007. |
[17] |
M. V. Klibanov and A. Timonov, "Carleman Estimates for Coefficient Inverse Problems and Numerical Applications," Inverse and Ill-Posed Problems Series, VSP, Utrecht, 2004. |
[18] |
J. E. Lagnese, G. Leugering, and E. J. P. G. Schmidt, "Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures," Systems & Control: Foundations & Applications, Birkhäuser Boston Inc., Boston, MA, 1994. |
[19] |
I. Lasiecka, R. Triggiani and P.-F. Yao, Inverse/observability estimates for second-order hyperbolic equations with variable coefficients, J. Math. Anal. Appl., 235 (1999), 13-57.doi: 10.1006/jmaa.1999.6348. |
[20] |
J.-L. Lions, "Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Tome 1, Contrôlabilité Exacte," Recherches en Mathématiques Appliquées, 8, Masson, Paris, 1988. |
[21] |
J.-L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications," Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 182, Springer-Verlag, New York-Heidelberg, 1972. |
[22] |
S. Nicaise and J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks, Netw. Heterog. Media, 2 (2007), 425-479.doi: 10.3934/nhm.2007.2.425. |
[23] |
S. Nicaise and O. Zaïr, Identifiability, stability and reconstruction results of point sources by boundary measurements in heteregeneous trees, Rev. Mat. Complut., 16 (2003), 151-178. |
[24] |
J.-P. Puel and M. Yamamoto, Generic well-posedness in a multidimensional hyperbolic inverse problem, J. Inverse Ill-Posed Probl., 5 (1997), 55-83.doi: 10.1515/jiip.1997.5.1.55. |
[25] |
E. J. P. G. Schmidt, On the modelling and exact controllability of networks of vibrating strings, SIAM J. Control Optim., 30 (1992), 229-245.doi: 10.1137/0330015. |
[26] |
J. Valein and E. Zuazua, Stabilization of the wave equation on 1-D networks, SIAM J. Control Optim., 48 (2009), 2771-2797.doi: 10.1137/080733590. |
[27] |
F. Visco-Comandini, M. Mirrahimi and M. Sorine, Some inverse scattering problems on star-shaped graphs, J. Math. Anal. Appl., 378 (2011), 343-358, arXiv:0907.1561. |
[28] |
M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems, J. Math. Pures Appl. (9), 78 (1999), 65-98.doi: 10.1016/S0021-7824(99)80010-5. |
[29] |
M. Yamamoto and X. Zhang, Global uniqueness and stability for a class of multidimensional inverse hyperbolic problems with two unknowns, Appl. Math. Optim., 48 (2003), 211-228.doi: 10.1007/s00245-003-0775-5. |
[30] |
X. Zhang, Explicit observability inequalities for the wave equation with lower order terms by means of Carleman inequalities, SIAM J. Control Optim., 39 (2000), 812-834 (electronic).doi: 10.1137/S0363012999350298. |
[31] |
E. Zuazua, Control and stabilization of waves on 1-d networks, in "Traffic Flow on Networks" (eds. B. Piccoli and M. Rascle), Lecture Notes in Mathematics, CIME subseries, 2011. |