September  2011, 1(3): 307-330. doi: 10.3934/mcrf.2011.1.307

Global Carleman estimate on a network for the wave equation and application to an inverse problem

1. 

CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France

2. 

Laboratoire de Mathématiques de Versailles, Université de Versailles Saint-Quentin en Yvelines, F-78035 Versailles, France

3. 

Institut Elie Cartan de Nancy & INRIA (Project-Team CORIDA), BP 239, F-54506 Vandœuvre-les-Nancy Cedex, France

Received  March 2011 Revised  May 2011 Published  September 2011

We are interested in an inverse problem for the wave equation with potential on a star-shaped network. We prove the Lipschitz stability of the inverse problem consisting in the determination of the potential on each string of the network with Neumann boundary measurements at all but one external vertices. Our main tool, proved in this article, is a global Carleman estimate for the network.
Citation: Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307
References:
[1]

K. Ammari and M. Jellouli, Stabilization of star-shaped networks of strings,, Differential Integral Equations, 17 (2004), 1395.   Google Scholar

[2]

S. Avdonin, G. Leugering and V. Mikhaylov, On an inverse problem for tree-like networks of elastic strings,, ZAMM Z. Angew. Math. Mech., 90 (2010), 136.  doi: 10.1002/zamm.200900295.  Google Scholar

[3]

L. Baudouin, A. Mercado and A. Osses, A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem,, Inverse Problems, 23 (2007), 257.  doi: 10.1088/0266-5611/23/1/014.  Google Scholar

[4]

M. I. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method,, Inverse Problems, 20 (2004), 647.  doi: 10.1088/0266-5611/20/3/002.  Google Scholar

[5]

M. Bellassoued, Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients,, Appl. Anal., 83 (2004), 983.  doi: 10.1080/0003681042000221678.  Google Scholar

[6]

A. Benabdallah, Y. Dermenjian and J. Le Rousseau, Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem,, J. Math. Anal. Appl., 336 (2007), 865.  doi: 10.1016/j.jmaa.2007.03.024.  Google Scholar

[7]

A. L. Bukhgeim, "Volterra Equations and Inverse Problems,", Inverse and Ill-Posed Problems Series, (1999).   Google Scholar

[8]

A. L. Bukhgeĭm and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems,, Dokl. Akad. Nauk SSSR, 260 (1981), 269.   Google Scholar

[9]

R. Dáger, Observation and control of vibrations in tree-shaped networks of strings,, SIAM J. Control Optim., 43 (2004), 590.  doi: 10.1137/S0363012903421844.  Google Scholar

[10]

R. Dáger and E. Zuazua, Controllability of star-shaped networks of strings,, In, (2000), 1006.   Google Scholar

[11]

R. Dáger and E. Zuazua, "Wave Propagation, Observation and Control in $1\text{-}d$ Flexible Multi-Structures," Mathématiques & Applications (Berlin), 50,, Springer-Verlag, (2006).   Google Scholar

[12]

O. Y. Imanuvilov and M. Yamamoto, Determination of a coefficient in an acoustic equation with a single measurement,, Inverse Problems, 19 (2003), 157.  doi: 10.1088/0266-5611/19/1/309.  Google Scholar

[13]

Oleg Yu. Imanuvilov and Masahiro Yamamoto, Global uniqueness and stability in determining coefficients of wave equations,, Comm. Partial Differential Equations, 26 (2001), 1409.   Google Scholar

[14]

V. Isakov, "Inverse Problems for Partial Differential Equations," second edition, Applied Mathematical Sciences, 127,, Springer, (2006).   Google Scholar

[15]

M. V. Klibanov, Inverse problems and Carleman estimates,, Inverse Problems, 8 (1992), 575.  doi: 10.1088/0266-5611/8/4/009.  Google Scholar

[16]

M. V. Klibanov and J. Malinsky, Newton-Kantorovich method for three-dimensional potential inverse scattering problem and stability of the hyperbolic Cauchy problem with time-dependent data,, Inverse Problems, 7 (1991), 577.  doi: 10.1088/0266-5611/7/4/007.  Google Scholar

[17]

M. V. Klibanov and A. Timonov, "Carleman Estimates for Coefficient Inverse Problems and Numerical Applications,", Inverse and Ill-Posed Problems Series, (2004).   Google Scholar

[18]

J. E. Lagnese, G. Leugering, and E. J. P. G. Schmidt, "Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures,", Systems & Control: Foundations & Applications, (1994).   Google Scholar

[19]

I. Lasiecka, R. Triggiani and P.-F. Yao, Inverse/observability estimates for second-order hyperbolic equations with variable coefficients,, J. Math. Anal. Appl., 235 (1999), 13.  doi: 10.1006/jmaa.1999.6348.  Google Scholar

[20]

J.-L. Lions, "Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Tome 1, Contrôlabilité Exacte," Recherches en Mathématiques Appliquées, 8,, Masson, (1988).   Google Scholar

[21]

J.-L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications,", Translated from the French by P. Kenneth, (1972).   Google Scholar

[22]

S. Nicaise and J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks,, Netw. Heterog. Media, 2 (2007), 425.  doi: 10.3934/nhm.2007.2.425.  Google Scholar

[23]

S. Nicaise and O. Zaïr, Identifiability, stability and reconstruction results of point sources by boundary measurements in heteregeneous trees,, Rev. Mat. Complut., 16 (2003), 151.   Google Scholar

[24]

J.-P. Puel and M. Yamamoto, Generic well-posedness in a multidimensional hyperbolic inverse problem,, J. Inverse Ill-Posed Probl., 5 (1997), 55.  doi: 10.1515/jiip.1997.5.1.55.  Google Scholar

[25]

E. J. P. G. Schmidt, On the modelling and exact controllability of networks of vibrating strings,, SIAM J. Control Optim., 30 (1992), 229.  doi: 10.1137/0330015.  Google Scholar

[26]

J. Valein and E. Zuazua, Stabilization of the wave equation on 1-D networks,, SIAM J. Control Optim., 48 (2009), 2771.  doi: 10.1137/080733590.  Google Scholar

[27]

F. Visco-Comandini, M. Mirrahimi and M. Sorine, Some inverse scattering problems on star-shaped graphs,, J. Math. Anal. Appl., 378 (2011), 343.   Google Scholar

[28]

M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems,, J. Math. Pures Appl. (9), 78 (1999), 65.  doi: 10.1016/S0021-7824(99)80010-5.  Google Scholar

[29]

M. Yamamoto and X. Zhang, Global uniqueness and stability for a class of multidimensional inverse hyperbolic problems with two unknowns,, Appl. Math. Optim., 48 (2003), 211.  doi: 10.1007/s00245-003-0775-5.  Google Scholar

[30]

X. Zhang, Explicit observability inequalities for the wave equation with lower order terms by means of Carleman inequalities,, SIAM J. Control Optim., 39 (2000), 812.  doi: 10.1137/S0363012999350298.  Google Scholar

[31]

E. Zuazua, Control and stabilization of waves on 1-d networks,, in, (2011).   Google Scholar

show all references

References:
[1]

K. Ammari and M. Jellouli, Stabilization of star-shaped networks of strings,, Differential Integral Equations, 17 (2004), 1395.   Google Scholar

[2]

S. Avdonin, G. Leugering and V. Mikhaylov, On an inverse problem for tree-like networks of elastic strings,, ZAMM Z. Angew. Math. Mech., 90 (2010), 136.  doi: 10.1002/zamm.200900295.  Google Scholar

[3]

L. Baudouin, A. Mercado and A. Osses, A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem,, Inverse Problems, 23 (2007), 257.  doi: 10.1088/0266-5611/23/1/014.  Google Scholar

[4]

M. I. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method,, Inverse Problems, 20 (2004), 647.  doi: 10.1088/0266-5611/20/3/002.  Google Scholar

[5]

M. Bellassoued, Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients,, Appl. Anal., 83 (2004), 983.  doi: 10.1080/0003681042000221678.  Google Scholar

[6]

A. Benabdallah, Y. Dermenjian and J. Le Rousseau, Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem,, J. Math. Anal. Appl., 336 (2007), 865.  doi: 10.1016/j.jmaa.2007.03.024.  Google Scholar

[7]

A. L. Bukhgeim, "Volterra Equations and Inverse Problems,", Inverse and Ill-Posed Problems Series, (1999).   Google Scholar

[8]

A. L. Bukhgeĭm and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems,, Dokl. Akad. Nauk SSSR, 260 (1981), 269.   Google Scholar

[9]

R. Dáger, Observation and control of vibrations in tree-shaped networks of strings,, SIAM J. Control Optim., 43 (2004), 590.  doi: 10.1137/S0363012903421844.  Google Scholar

[10]

R. Dáger and E. Zuazua, Controllability of star-shaped networks of strings,, In, (2000), 1006.   Google Scholar

[11]

R. Dáger and E. Zuazua, "Wave Propagation, Observation and Control in $1\text{-}d$ Flexible Multi-Structures," Mathématiques & Applications (Berlin), 50,, Springer-Verlag, (2006).   Google Scholar

[12]

O. Y. Imanuvilov and M. Yamamoto, Determination of a coefficient in an acoustic equation with a single measurement,, Inverse Problems, 19 (2003), 157.  doi: 10.1088/0266-5611/19/1/309.  Google Scholar

[13]

Oleg Yu. Imanuvilov and Masahiro Yamamoto, Global uniqueness and stability in determining coefficients of wave equations,, Comm. Partial Differential Equations, 26 (2001), 1409.   Google Scholar

[14]

V. Isakov, "Inverse Problems for Partial Differential Equations," second edition, Applied Mathematical Sciences, 127,, Springer, (2006).   Google Scholar

[15]

M. V. Klibanov, Inverse problems and Carleman estimates,, Inverse Problems, 8 (1992), 575.  doi: 10.1088/0266-5611/8/4/009.  Google Scholar

[16]

M. V. Klibanov and J. Malinsky, Newton-Kantorovich method for three-dimensional potential inverse scattering problem and stability of the hyperbolic Cauchy problem with time-dependent data,, Inverse Problems, 7 (1991), 577.  doi: 10.1088/0266-5611/7/4/007.  Google Scholar

[17]

M. V. Klibanov and A. Timonov, "Carleman Estimates for Coefficient Inverse Problems and Numerical Applications,", Inverse and Ill-Posed Problems Series, (2004).   Google Scholar

[18]

J. E. Lagnese, G. Leugering, and E. J. P. G. Schmidt, "Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures,", Systems & Control: Foundations & Applications, (1994).   Google Scholar

[19]

I. Lasiecka, R. Triggiani and P.-F. Yao, Inverse/observability estimates for second-order hyperbolic equations with variable coefficients,, J. Math. Anal. Appl., 235 (1999), 13.  doi: 10.1006/jmaa.1999.6348.  Google Scholar

[20]

J.-L. Lions, "Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Tome 1, Contrôlabilité Exacte," Recherches en Mathématiques Appliquées, 8,, Masson, (1988).   Google Scholar

[21]

J.-L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications,", Translated from the French by P. Kenneth, (1972).   Google Scholar

[22]

S. Nicaise and J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks,, Netw. Heterog. Media, 2 (2007), 425.  doi: 10.3934/nhm.2007.2.425.  Google Scholar

[23]

S. Nicaise and O. Zaïr, Identifiability, stability and reconstruction results of point sources by boundary measurements in heteregeneous trees,, Rev. Mat. Complut., 16 (2003), 151.   Google Scholar

[24]

J.-P. Puel and M. Yamamoto, Generic well-posedness in a multidimensional hyperbolic inverse problem,, J. Inverse Ill-Posed Probl., 5 (1997), 55.  doi: 10.1515/jiip.1997.5.1.55.  Google Scholar

[25]

E. J. P. G. Schmidt, On the modelling and exact controllability of networks of vibrating strings,, SIAM J. Control Optim., 30 (1992), 229.  doi: 10.1137/0330015.  Google Scholar

[26]

J. Valein and E. Zuazua, Stabilization of the wave equation on 1-D networks,, SIAM J. Control Optim., 48 (2009), 2771.  doi: 10.1137/080733590.  Google Scholar

[27]

F. Visco-Comandini, M. Mirrahimi and M. Sorine, Some inverse scattering problems on star-shaped graphs,, J. Math. Anal. Appl., 378 (2011), 343.   Google Scholar

[28]

M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems,, J. Math. Pures Appl. (9), 78 (1999), 65.  doi: 10.1016/S0021-7824(99)80010-5.  Google Scholar

[29]

M. Yamamoto and X. Zhang, Global uniqueness and stability for a class of multidimensional inverse hyperbolic problems with two unknowns,, Appl. Math. Optim., 48 (2003), 211.  doi: 10.1007/s00245-003-0775-5.  Google Scholar

[30]

X. Zhang, Explicit observability inequalities for the wave equation with lower order terms by means of Carleman inequalities,, SIAM J. Control Optim., 39 (2000), 812.  doi: 10.1137/S0363012999350298.  Google Scholar

[31]

E. Zuazua, Control and stabilization of waves on 1-d networks,, in, (2011).   Google Scholar

[1]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[2]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[3]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[4]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[5]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[6]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[7]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[8]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[9]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[10]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[11]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[12]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[13]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[14]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[15]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[16]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[17]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[18]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[19]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[20]

Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (7)

[Back to Top]