-
Previous Article
Coefficient identification and fault detection in linear elastic systems; one dimensional problems
- MCRF Home
- This Issue
-
Next Article
Internal stabilization of a Mindlin-Timoshenko model by interior feedbacks
Global stabilization of a coupled system of two generalized Korteweg-de Vries type equations posed on a finite domain
1. | Instituto de Matemática, Universidade Federal do Rio de Janeiro, P.O. Box 68530, CEP 21941-909, Rio de Janeiro, RJ, Brazil, Brazil |
2. | Institut Élie Cartan, UMR 7502 UHP/CNRS/INRIA, B.P. 239, F-54506 Vandoeuvre-lès-Nancy Cedex |
References:
[1] |
M. Ablowitz, D. Kaup, A. Newell and H. Segur, Nonlinear-evolution equations of physical signifcance, Phys. Rev. Lett., 31 (1973), 125-127.
doi: 10.1103/PhysRevLett.31.125. |
[2] |
E. Alarcon, J. Angulo and J. F. Montenegro, Stability and instability of solitary waves for a nonlinear dispersive system, Nonlinear Anal., 36 (1999), 1015-1035.
doi: 10.1016/S0362-546X(97)00724-4. |
[3] |
E. Bisognin, V. Bisognin and G. P. Menzala, Exponential stabilization of a coupled system of Korteweg-de Vries Equations with localized damping, Adv. Diff. Eq., 8 (2003), 443-469. |
[4] |
J. Bona, G. Ponce, J.-C. Saut and M. M. Tom, A model system for strong interaction between internal solitary waves, Comm. Math. Phys., 143 (1992), 287-313.
doi: 10.1007/BF02099010. |
[5] |
T. Cazenave and A. Haraux, "An Introduction to Semilinear Evolution Equation," Oxford Lecture Series in Mathematics and its Applications, 13, The Clarendon Press, Oxford University Press, New York, 1998. |
[6] |
J. Bona, S. M. Sun and B.-Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain, Comm. Partial Differential Equations, 28 (2003), 1391-1436. |
[7] |
M. Davila, "On the Unique Continuation Property for a Coupled System of Korteweg-de Vries Equations," Ph.D thesis, Federal University of Rio de Janeiro, 1994. |
[8] |
J. A. Gear and R. Grimshaw, Weak and strong interaction between internal solitary waves, Stud. in Appl. Math., 70 (1984), 235-258. |
[9] |
F. Linares and M. Panthee, On the Cauchy problem for a coupled system of KdV equations, Commun. Pure Appl. Anal., 3 (2004), 417-431.
doi: 10.3934/cpaa.2004.3.417. |
[10] |
F. Linares and A. F. Pazoto, On the exponential decay of the critical generalized Korteweg-de Vries equation with localized damping, Proc. Amer. Math. Soc., 135 (2007), 1515-1522.
doi: 10.1090/S0002-9939-07-08810-7. |
[11] |
C. P. Massarolo and A. F. Pazoto, Uniform stabilization of a nonlinear coupled system of Korteweg-de Vries equation as a singular limit of the Kuramoto-Sivashinsky system, Differential Integral Equations, 22 (2009), 53-68. |
[12] |
G. P. Menzala, C. F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping, Quarterly of Appl. Math., 60 (2002), 111-129. |
[13] |
G. P. Menzala, C. P. Massarolo and A. F. Pazoto, Uniform stabilization of a class of KdV equations with localized damping, Quarterly of Appl. Math., in press. |
[14] |
S. Micu and J. H. Ortega, On the controllability of a linear coupled system of Korteweg-de Vries equations, in "Mathematical and Numerical Aspects of Wave Propagation" (Santiago de Compostela, 2000), SIAM, Philadelphia, PA, (2000), 1020-1024. |
[15] |
S. Micu, J. H. Ortega and A. F. Pazoto, On the controllability of a coupled system of two Korteweg-de Vries equations, Commun. Contemp. Math., 11 (2009), 799-827.
doi: 10.1142/S0219199709003600. |
[16] |
A. Pazoto, Unique continuation and decay for the Korteweg-de Vries equation with localized damping, ESAIM Control Optim. Calc. Var., 11 (2005), 473-486.
doi: 10.1051/cocv:2005015. |
[17] |
L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 2 (1997), 33-55.
doi: 10.1051/cocv:1997102. |
[18] |
L. Rosier, Control of the surface of a fluid by a wavemaker, ESAIM Control Optim. Calc. Var., 10 (2004), 346-380.
doi: 10.1051/cocv:2004012. |
[19] |
L. Rosier, Exact boundary controllability for the linear Korteweg-de Vries equation on the half-line, SIAM J. Control Optim., 39 (2000), 331-351.
doi: 10.1137/S0363012999353229. |
[20] |
L. Rosier and B.-Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain, SIAM J. Control Optim., 45 (2006), 927-956.
doi: 10.1137/050631409. |
[21] |
J. Simon, Compact sets in the $L^p(0,T;B)$ spaces, Analli Mat. Pura Appl., 146 (1987), 65-96. |
[22] |
R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis," Third edition, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam, 1984. |
[23] |
O. P. Vera Villagran, "Gain of Regularity of the Solutions of a Coupled System of Equations of Korteweg-de Vries Type," Ph.D thesis, Federal University of Rio de Janeiro, 2001. |
show all references
References:
[1] |
M. Ablowitz, D. Kaup, A. Newell and H. Segur, Nonlinear-evolution equations of physical signifcance, Phys. Rev. Lett., 31 (1973), 125-127.
doi: 10.1103/PhysRevLett.31.125. |
[2] |
E. Alarcon, J. Angulo and J. F. Montenegro, Stability and instability of solitary waves for a nonlinear dispersive system, Nonlinear Anal., 36 (1999), 1015-1035.
doi: 10.1016/S0362-546X(97)00724-4. |
[3] |
E. Bisognin, V. Bisognin and G. P. Menzala, Exponential stabilization of a coupled system of Korteweg-de Vries Equations with localized damping, Adv. Diff. Eq., 8 (2003), 443-469. |
[4] |
J. Bona, G. Ponce, J.-C. Saut and M. M. Tom, A model system for strong interaction between internal solitary waves, Comm. Math. Phys., 143 (1992), 287-313.
doi: 10.1007/BF02099010. |
[5] |
T. Cazenave and A. Haraux, "An Introduction to Semilinear Evolution Equation," Oxford Lecture Series in Mathematics and its Applications, 13, The Clarendon Press, Oxford University Press, New York, 1998. |
[6] |
J. Bona, S. M. Sun and B.-Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain, Comm. Partial Differential Equations, 28 (2003), 1391-1436. |
[7] |
M. Davila, "On the Unique Continuation Property for a Coupled System of Korteweg-de Vries Equations," Ph.D thesis, Federal University of Rio de Janeiro, 1994. |
[8] |
J. A. Gear and R. Grimshaw, Weak and strong interaction between internal solitary waves, Stud. in Appl. Math., 70 (1984), 235-258. |
[9] |
F. Linares and M. Panthee, On the Cauchy problem for a coupled system of KdV equations, Commun. Pure Appl. Anal., 3 (2004), 417-431.
doi: 10.3934/cpaa.2004.3.417. |
[10] |
F. Linares and A. F. Pazoto, On the exponential decay of the critical generalized Korteweg-de Vries equation with localized damping, Proc. Amer. Math. Soc., 135 (2007), 1515-1522.
doi: 10.1090/S0002-9939-07-08810-7. |
[11] |
C. P. Massarolo and A. F. Pazoto, Uniform stabilization of a nonlinear coupled system of Korteweg-de Vries equation as a singular limit of the Kuramoto-Sivashinsky system, Differential Integral Equations, 22 (2009), 53-68. |
[12] |
G. P. Menzala, C. F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping, Quarterly of Appl. Math., 60 (2002), 111-129. |
[13] |
G. P. Menzala, C. P. Massarolo and A. F. Pazoto, Uniform stabilization of a class of KdV equations with localized damping, Quarterly of Appl. Math., in press. |
[14] |
S. Micu and J. H. Ortega, On the controllability of a linear coupled system of Korteweg-de Vries equations, in "Mathematical and Numerical Aspects of Wave Propagation" (Santiago de Compostela, 2000), SIAM, Philadelphia, PA, (2000), 1020-1024. |
[15] |
S. Micu, J. H. Ortega and A. F. Pazoto, On the controllability of a coupled system of two Korteweg-de Vries equations, Commun. Contemp. Math., 11 (2009), 799-827.
doi: 10.1142/S0219199709003600. |
[16] |
A. Pazoto, Unique continuation and decay for the Korteweg-de Vries equation with localized damping, ESAIM Control Optim. Calc. Var., 11 (2005), 473-486.
doi: 10.1051/cocv:2005015. |
[17] |
L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 2 (1997), 33-55.
doi: 10.1051/cocv:1997102. |
[18] |
L. Rosier, Control of the surface of a fluid by a wavemaker, ESAIM Control Optim. Calc. Var., 10 (2004), 346-380.
doi: 10.1051/cocv:2004012. |
[19] |
L. Rosier, Exact boundary controllability for the linear Korteweg-de Vries equation on the half-line, SIAM J. Control Optim., 39 (2000), 331-351.
doi: 10.1137/S0363012999353229. |
[20] |
L. Rosier and B.-Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain, SIAM J. Control Optim., 45 (2006), 927-956.
doi: 10.1137/050631409. |
[21] |
J. Simon, Compact sets in the $L^p(0,T;B)$ spaces, Analli Mat. Pura Appl., 146 (1987), 65-96. |
[22] |
R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis," Third edition, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam, 1984. |
[23] |
O. P. Vera Villagran, "Gain of Regularity of the Solutions of a Coupled System of Equations of Korteweg-de Vries Type," Ph.D thesis, Federal University of Rio de Janeiro, 2001. |
[1] |
Eduardo Cerpa, Emmanuelle Crépeau. Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 655-668. doi: 10.3934/dcdsb.2009.11.655 |
[2] |
Ahmat Mahamat Taboye, Mohamed Laabissi. Exponential stabilization of a linear Korteweg-de Vries equation with input saturation. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021052 |
[3] |
Eduardo Cerpa. Control of a Korteweg-de Vries equation: A tutorial. Mathematical Control and Related Fields, 2014, 4 (1) : 45-99. doi: 10.3934/mcrf.2014.4.45 |
[4] |
M. Agrotis, S. Lafortune, P.G. Kevrekidis. On a discrete version of the Korteweg-De Vries equation. Conference Publications, 2005, 2005 (Special) : 22-29. doi: 10.3934/proc.2005.2005.22 |
[5] |
Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255 |
[6] |
Muhammad Usman, Bing-Yu Zhang. Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1509-1523. doi: 10.3934/dcds.2010.26.1509 |
[7] |
Pierre Garnier. Damping to prevent the blow-up of the korteweg-de vries equation. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1455-1470. doi: 10.3934/cpaa.2017069 |
[8] |
Eduardo Cerpa, Emmanuelle Crépeau, Julie Valein. Boundary controllability of the Korteweg-de Vries equation on a tree-shaped network. Evolution Equations and Control Theory, 2020, 9 (3) : 673-692. doi: 10.3934/eect.2020028 |
[9] |
Ludovick Gagnon. Qualitative description of the particle trajectories for the N-solitons solution of the Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1489-1507. doi: 10.3934/dcds.2017061 |
[10] |
Arnaud Debussche, Jacques Printems. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 761-781. doi: 10.3934/dcdsb.2006.6.761 |
[11] |
Roberto A. Capistrano-Filho, Shuming Sun, Bing-Yu Zhang. General boundary value problems of the Korteweg-de Vries equation on a bounded domain. Mathematical Control and Related Fields, 2018, 8 (3&4) : 583-605. doi: 10.3934/mcrf.2018024 |
[12] |
Qifan Li. Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1097-1109. doi: 10.3934/cpaa.2012.11.1097 |
[13] |
Shou-Fu Tian. Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Communications on Pure and Applied Analysis, 2018, 17 (3) : 923-957. doi: 10.3934/cpaa.2018046 |
[14] |
Anne de Bouard, Eric Gautier. Exit problems related to the persistence of solitons for the Korteweg-de Vries equation with small noise. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 857-871. doi: 10.3934/dcds.2010.26.857 |
[15] |
John P. Albert. A uniqueness result for 2-soliton solutions of the Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3635-3670. doi: 10.3934/dcds.2019149 |
[16] |
Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 |
[17] |
Mostafa Abounouh, Hassan Al-Moatassime, Sabah Kaouri. Non-standard boundary conditions for the linearized Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2625-2654. doi: 10.3934/dcdss.2021066 |
[18] |
Julie Valein. On the asymptotic stability of the Korteweg-de Vries equation with time-delayed internal feedback. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021039 |
[19] |
Rusuo Ye, Yi Zhang. Initial-boundary value problems for the two-component complex modified Korteweg-de Vries equation on the interval. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022111 |
[20] |
Ryan McConnell. Global attractor for the periodic generalized Korteweg-De Vries equation through smoothing. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022115 |
2021 Impact Factor: 1.141
Tools
Metrics
Other articles
by authors
[Back to Top]