-
Previous Article
Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain
- MCRF Home
- This Issue
-
Next Article
Numerical methods for dividend optimization using regime-switching jump-diffusion models
Cesari-type conditions for semilinear elliptic equation with leading term containing controls
1. | School of Mathematical Sciences, Fudan University, Shanghai 200433, China |
2. | School of Mathematical Sciences and LMNS, Fudan University, Shanghai 200433 |
References:
[1] |
G. Allaire, "Shape Optimization by the Homogenization Method," Springer, New York, 2002. |
[2] |
A. Bensoussan, J. L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures," North-Holland Company, Amsterdam, 1978. |
[3] |
E. Cabib and G. Dal Maso, On a class of optimum problems in structural design, J. Optim. Theory Appl., 56 (1988), 39-65.
doi: 10.1007/BF00938526. |
[4] |
L. Cesari, "Optimization Theory and Applications, Problems with Ordinary Equations," Applications of Mathematics 17, Springer, New York, 1983. |
[5] |
A. F. Filippov, On certain questions in the theory of optimal control, SAIM J. Control Optim., 1 (1962), 76-84. |
[6] |
X. Li and J. Yong, "Optimal Control Theory for Infinite Dimensional Systems," Birkhäuser, Boston, 1995. |
[7] |
N. G. Meyers, An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Sc. Norm. Sup. Pisa, 17 (1963), 189-206. |
[8] |
G. Milton and R. V. Kohn, Variational bounds on the effective moduli of anisotropic composites, J. Mech. Phys. Solids, 36 (1988), 597-629. |
[9] |
F. Murat and L. Tartar, H-convergence, in: "Topics in the Mathematical Modelling of Composites Materials" (Eds. A. Cherkaev, R.V. Kohn), Boston, Birkhäuser, Boston 1997, 21-44 (French version: F. Murat, H-convergence, Mimeographed notes, Séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger, 1978). |
[10] |
F. Murat and L. Tartar, Calculus of variations and homogenization, in: "Topics in the Mathematical Modelling of Composites Materials" (Eds. A. Cherkaev, R. V. Kohn), Birkhäuser," Boston 1997, 139-173 (French version: F. Murat, Calcul des variations et homogénéisation, in: Les méthodes de l'homogénéisation, théorie et applications en physique, Coll. Dir. Etudes et Recherches EDF, Eyrolles, 1985, 319-369). |
[11] |
L. Tartar, Estimations fines des coefficitents homogénéisés, Ennio de Giorgi colloquium, P. Krée ed., Pitman Research Notes in Math., 125 (1985), 168-187.
doi: i:10.1016/0022-5096(88)90001-4. |
[12] |
J. Warga, "Optimal Control of Differential and Functional Equations," Academic Press, New York, 1972. |
show all references
References:
[1] |
G. Allaire, "Shape Optimization by the Homogenization Method," Springer, New York, 2002. |
[2] |
A. Bensoussan, J. L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures," North-Holland Company, Amsterdam, 1978. |
[3] |
E. Cabib and G. Dal Maso, On a class of optimum problems in structural design, J. Optim. Theory Appl., 56 (1988), 39-65.
doi: 10.1007/BF00938526. |
[4] |
L. Cesari, "Optimization Theory and Applications, Problems with Ordinary Equations," Applications of Mathematics 17, Springer, New York, 1983. |
[5] |
A. F. Filippov, On certain questions in the theory of optimal control, SAIM J. Control Optim., 1 (1962), 76-84. |
[6] |
X. Li and J. Yong, "Optimal Control Theory for Infinite Dimensional Systems," Birkhäuser, Boston, 1995. |
[7] |
N. G. Meyers, An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Sc. Norm. Sup. Pisa, 17 (1963), 189-206. |
[8] |
G. Milton and R. V. Kohn, Variational bounds on the effective moduli of anisotropic composites, J. Mech. Phys. Solids, 36 (1988), 597-629. |
[9] |
F. Murat and L. Tartar, H-convergence, in: "Topics in the Mathematical Modelling of Composites Materials" (Eds. A. Cherkaev, R.V. Kohn), Boston, Birkhäuser, Boston 1997, 21-44 (French version: F. Murat, H-convergence, Mimeographed notes, Séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger, 1978). |
[10] |
F. Murat and L. Tartar, Calculus of variations and homogenization, in: "Topics in the Mathematical Modelling of Composites Materials" (Eds. A. Cherkaev, R. V. Kohn), Birkhäuser," Boston 1997, 139-173 (French version: F. Murat, Calcul des variations et homogénéisation, in: Les méthodes de l'homogénéisation, théorie et applications en physique, Coll. Dir. Etudes et Recherches EDF, Eyrolles, 1985, 319-369). |
[11] |
L. Tartar, Estimations fines des coefficitents homogénéisés, Ennio de Giorgi colloquium, P. Krée ed., Pitman Research Notes in Math., 125 (1985), 168-187.
doi: i:10.1016/0022-5096(88)90001-4. |
[12] |
J. Warga, "Optimal Control of Differential and Functional Equations," Academic Press, New York, 1972. |
[1] |
Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004 |
[2] |
Muhammad I. Mustafa. On the control of the wave equation by memory-type boundary condition. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1179-1192. doi: 10.3934/dcds.2015.35.1179 |
[3] |
Liangquan Zhang, Qing Zhou, Juan Yang. Necessary condition for optimal control of doubly stochastic systems. Mathematical Control and Related Fields, 2020, 10 (2) : 379-403. doi: 10.3934/mcrf.2020002 |
[4] |
Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10 (2) : 343-367. doi: 10.3934/nhm.2015.10.343 |
[5] |
Piero Montecchiari, Paul H. Rabinowitz. A nondegeneracy condition for a semilinear elliptic system and the existence of 1- bump solutions. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6995-7012. doi: 10.3934/dcds.2019241 |
[6] |
Ana P. Lemos-Paião, Cristiana J. Silva, Delfim F. M. Torres. A sufficient optimality condition for delayed state-linear optimal control problems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2293-2313. doi: 10.3934/dcdsb.2019096 |
[7] |
Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070 |
[8] |
Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure and Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191 |
[9] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[10] |
Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control and Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73 |
[11] |
Eun Bee Choi, Yun-Ho Kim. Existence of nontrivial solutions for equations of $p(x)$-Laplace type without Ambrosetti and Rabinowitz condition. Conference Publications, 2015, 2015 (special) : 276-286. doi: 10.3934/proc.2015.0276 |
[12] |
Nicolas Forcadel, Wilfredo Salazar, Mamdouh Zaydan. Specified homogenization of a discrete traffic model leading to an effective junction condition. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2173-2206. doi: 10.3934/cpaa.2018104 |
[13] |
Sami Aouaoui, Rahma Jlel. On some elliptic equation in the whole euclidean space $ \mathbb{R}^2 $ with nonlinearities having new exponential growth condition. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4771-4796. doi: 10.3934/cpaa.2020211 |
[14] |
Tsung-Fang Wu. Multiplicity of positive solutions for a semilinear elliptic equation in $R_+^N$ with nonlinear boundary condition. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1675-1696. doi: 10.3934/cpaa.2010.9.1675 |
[15] |
Muslim Malik, Anjali Rose, Anil Kumar. Controllability of Sobolev type fuzzy differential equation with non-instantaneous impulsive condition. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 387-407. doi: 10.3934/dcdss.2021068 |
[16] |
Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006 |
[17] |
Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control and Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034 |
[18] |
Peter I. Kogut, Olha P. Kupenko. On optimal control problem for an ill-posed strongly nonlinear elliptic equation with $p$-Laplace operator and $L^1$-type of nonlinearity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1273-1295. doi: 10.3934/dcdsb.2019016 |
[19] |
Shu Luan. On the existence of optimal control for semilinear elliptic equations with nonlinear neumann boundary conditions. Mathematical Control and Related Fields, 2017, 7 (3) : 493-506. doi: 10.3934/mcrf.2017018 |
[20] |
Imen Benabbas, Djamel Eddine Teniou. Observability of wave equation with Ventcel dynamic condition. Evolution Equations and Control Theory, 2018, 7 (4) : 545-570. doi: 10.3934/eect.2018026 |
2020 Impact Factor: 1.284
Tools
Metrics
Other articles
by authors
[Back to Top]