December  2011, 1(4): 413-436. doi: 10.3934/mcrf.2011.1.413

Indirect stabilization of weakly coupled systems with hybrid boundary conditions

1. 

Present position Délégation CNRS at MAPMO, UMR 6628, Current position Université Paul Verlaine-Metz, Ile du Saulcy, 57045 Metz Cedex 1, France

2. 

Dipartimento di Matematica, Università degli Studi di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Roma

3. 

Dipartimento di Matematica - Università di Roma "Tor Vergata", Via della Ricerca Scientifica 1 - 00133 Roma, Italy

Received  March 2011 Revised  July 2011 Published  November 2011

We investigate stability properties of indirectly damped systems of evolution equations in Hilbert spaces, under new compatibility assumptions. We prove polynomial decay for the energy of solutions and optimize our results by interpolation techniques, obtaining a full range of power-like decay rates. In particular, we give explicit estimates with respect to the initial data. We discuss several applications to hyperbolic systems with hybrid boundary conditions, including the coupling of two wave equations subject to Dirichlet and Robin type boundary conditions, respectively.
Citation: Fatiha Alabau-Boussouira, Piermarco Cannarsa, Roberto Guglielmi. Indirect stabilization of weakly coupled systems with hybrid boundary conditions. Mathematical Control and Related Fields, 2011, 1 (4) : 413-436. doi: 10.3934/mcrf.2011.1.413
References:
[1]

F. Alabau, Stabilisation frontière indirecte de systèmes faiblement couplés, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 1015-1020. doi: 10.1016/S0764-4442(99)80316-4.

[2]

F. Alabau-Boussouira, Indirect boundary stabilization of weakly coupled hyperbolic systems, SIAM J. Control Optim., 41 (2002), 511-541. doi: 10.1137/S0363012901385368.

[3]

F. Alabau-Boussouira, Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 643-669. doi: 10.1007/s00030-007-5033-0.

[4]

F. Alabau, P. Cannarsa and V. Komornik, Indirect internal stabilization of weakly coupled evolution equations, J. Evol. Equ., 2 (2002), 127-150. doi: 10.1007/s00028-002-8083-0.

[5]

F. Alabau-Boussouira and M. Léautaud, Indirect stabilization of locally coupled wave-type systems,, ESAIM COCV., (). 

[6]

F. Ammar Khodja and A. Bader, Stabilizability of systems of one-dimensional wave equations by one internal or boundary control force, SIAM J. Control Optim., 39 (2001), 1833-1851. doi: 10.1137/S0363012900366613.

[7]

F. Ammar-Khodja, A. Benabdallah, J. E. Muñoz Rivera and R. Racke, Energy decay for Timoshenko systems of memory type, J. Differential Equations, 194 (2003), 82-115. doi: 10.1016/S0022-0396(03)00185-2.

[8]

G. Avalos and R. Triggiani, Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface, Discrete Contin. Dyn. Syst., 22 (2008), 817-833. doi: 10.3934/dcds.2008.22.817.

[9]

G. Avalos, I. Lasiecka and R. Triggiani, Beyond lack of compactness and lack of stability of a coupled parabolic-hyperbolic fluid-structure system, in "Optimal Control of Coupled Systems of Partial Differential Equations," 1-33, Internat. Ser. Numer. Math., 158, Birkhäuser Verlag, Basel, 2009.

[10]

A. Bátkai, K.-J. Engel, J. Prüss and R. Schnaubelt, Polynomial stability of operator semigroups, Math. Nachr., 279 (2006), 1425-1440. doi: 10.1002/mana.200410429.

[11]

C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., 8 (2008), 765-780. doi: 10.1007/s00028-008-0424-1.

[12]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, "Representation and Control of Infinite Dimensional Systems," 2nd edition, Systems & Control: Foundations & Applications, Birkhäuser Bostonm, Inc., Boston, MA, 2007.

[13]

A. Beyrath, Indirect linear locally distributed damping of coupled systems, Bol. Soc. Parana. Mat. (3), 22 (2004), 17-34.

[14]

A. Beyrath, Indirect internal observability stabilization of coupled systems with locally distributed damping, C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 451-456. doi: 10.1016/S0764-4442(01)01974-7.

[15]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478. doi: 10.1007/s00208-009-0439-0.

[16]

M. Boulakia and A. Osses, Local null controllability of a two-dimensional fluid-structure interaction problem, ESAIM Control Optim. Calc. Var., 14 (2008), 1-42. doi: 10.1051/cocv:2007031.

[17]

N. Burq, Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel, Acta Math., 180 (1998), 1-29. doi: 10.1007/BF02392877.

[18]

J.-M. Coron and S. Guerrero, Local null controllability of the two-dimensional Navier-Stokes system in the torus with a control force having a vanishing component, J. Math. Pures Appl. (9), 92 (2009), 528-545. doi: 10.1016/j.matpur.2009.05.015.

[19]

R. Dáger and E. Zuazua, "Wave Propagation, Observation and Control in $1-d$ flexible Multi-Structures," Mathématiques & Applications (Berlin) [Mathematics & Applications], 50, Springer-Verlag, Berlin, 2006.

[20]

K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations," With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.

[21]

B. Kapitonov, Stabilization and simultaneous boundary controllability for a pair of Maxwell's equations, Mat. Apl. Comput., 15 (1996), 213-225.

[22]

O. Imanuvilov and T. Takahashi, Exact controllability of a fluid-rigid body system, J. Math. Pures Appl. (9), 87 (2007), 408-437. doi: 10.1016/j.matpur.2007.01.005.

[23]

G. Lebeau, Équation des ondes amorties, in "Algebraic and Geometric Methods in Mathematical Physics" (Kaciveli, 1993), Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht, (1996), 73-109.

[24]

P. Loreti and B. Rao, Optimal energy decay rate for partially damped systems by spectral compensation, SIAM J. Control Optim., 45 (2006), 1612-1632. doi: 10.1137/S0363012903437319.

[25]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems," Progress in Nonlinear Differential Equations and their Applications, 16, Birkhäuser Verlag, Basel, 1995.

[26]

A. Lunardi, "Interpolation Theory," 2nd edition, Appunti, Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes, Scuola Normale Superiore di Pisa (New Series)], Edizioni della Normale, Pisa, 2009.

[27]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.

[28]

J.-P. Raymond and M. Vanninathan, Null controllability in a fluid-solid structure model, J. Differential Equations, 248 (2010), 1826-1865. doi: 10.1016/j.jde.2009.09.015.

[29]

D. Russell, A general framework for the study of indirect damping mechanisms in elastic systems, J. Math. Anal. Appl., 173 (1993), 339-358. doi: 10.1006/jmaa.1993.1071.

[30]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators," 2nd edition, Johann Ambrosius Barth, Heidelberg, 1995.

[31]

W. Youssef, "Contrôle et Stabilisation de Système Élastiques Couplés," Ph.D thesis, University Paul Verlaine-Metz, 2009.

[32]

X. Zhang and E. Zuazua, Asymptotic behavior of a hyperbolic-parabolic coupled system arising in fluid-structure interaction, in "Free Boundary Problems," Internat. Ser. Numer. Math., 154, Birkhäuser, Basel, (2007), 445-455.

show all references

References:
[1]

F. Alabau, Stabilisation frontière indirecte de systèmes faiblement couplés, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 1015-1020. doi: 10.1016/S0764-4442(99)80316-4.

[2]

F. Alabau-Boussouira, Indirect boundary stabilization of weakly coupled hyperbolic systems, SIAM J. Control Optim., 41 (2002), 511-541. doi: 10.1137/S0363012901385368.

[3]

F. Alabau-Boussouira, Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 643-669. doi: 10.1007/s00030-007-5033-0.

[4]

F. Alabau, P. Cannarsa and V. Komornik, Indirect internal stabilization of weakly coupled evolution equations, J. Evol. Equ., 2 (2002), 127-150. doi: 10.1007/s00028-002-8083-0.

[5]

F. Alabau-Boussouira and M. Léautaud, Indirect stabilization of locally coupled wave-type systems,, ESAIM COCV., (). 

[6]

F. Ammar Khodja and A. Bader, Stabilizability of systems of one-dimensional wave equations by one internal or boundary control force, SIAM J. Control Optim., 39 (2001), 1833-1851. doi: 10.1137/S0363012900366613.

[7]

F. Ammar-Khodja, A. Benabdallah, J. E. Muñoz Rivera and R. Racke, Energy decay for Timoshenko systems of memory type, J. Differential Equations, 194 (2003), 82-115. doi: 10.1016/S0022-0396(03)00185-2.

[8]

G. Avalos and R. Triggiani, Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface, Discrete Contin. Dyn. Syst., 22 (2008), 817-833. doi: 10.3934/dcds.2008.22.817.

[9]

G. Avalos, I. Lasiecka and R. Triggiani, Beyond lack of compactness and lack of stability of a coupled parabolic-hyperbolic fluid-structure system, in "Optimal Control of Coupled Systems of Partial Differential Equations," 1-33, Internat. Ser. Numer. Math., 158, Birkhäuser Verlag, Basel, 2009.

[10]

A. Bátkai, K.-J. Engel, J. Prüss and R. Schnaubelt, Polynomial stability of operator semigroups, Math. Nachr., 279 (2006), 1425-1440. doi: 10.1002/mana.200410429.

[11]

C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., 8 (2008), 765-780. doi: 10.1007/s00028-008-0424-1.

[12]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, "Representation and Control of Infinite Dimensional Systems," 2nd edition, Systems & Control: Foundations & Applications, Birkhäuser Bostonm, Inc., Boston, MA, 2007.

[13]

A. Beyrath, Indirect linear locally distributed damping of coupled systems, Bol. Soc. Parana. Mat. (3), 22 (2004), 17-34.

[14]

A. Beyrath, Indirect internal observability stabilization of coupled systems with locally distributed damping, C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 451-456. doi: 10.1016/S0764-4442(01)01974-7.

[15]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478. doi: 10.1007/s00208-009-0439-0.

[16]

M. Boulakia and A. Osses, Local null controllability of a two-dimensional fluid-structure interaction problem, ESAIM Control Optim. Calc. Var., 14 (2008), 1-42. doi: 10.1051/cocv:2007031.

[17]

N. Burq, Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel, Acta Math., 180 (1998), 1-29. doi: 10.1007/BF02392877.

[18]

J.-M. Coron and S. Guerrero, Local null controllability of the two-dimensional Navier-Stokes system in the torus with a control force having a vanishing component, J. Math. Pures Appl. (9), 92 (2009), 528-545. doi: 10.1016/j.matpur.2009.05.015.

[19]

R. Dáger and E. Zuazua, "Wave Propagation, Observation and Control in $1-d$ flexible Multi-Structures," Mathématiques & Applications (Berlin) [Mathematics & Applications], 50, Springer-Verlag, Berlin, 2006.

[20]

K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations," With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.

[21]

B. Kapitonov, Stabilization and simultaneous boundary controllability for a pair of Maxwell's equations, Mat. Apl. Comput., 15 (1996), 213-225.

[22]

O. Imanuvilov and T. Takahashi, Exact controllability of a fluid-rigid body system, J. Math. Pures Appl. (9), 87 (2007), 408-437. doi: 10.1016/j.matpur.2007.01.005.

[23]

G. Lebeau, Équation des ondes amorties, in "Algebraic and Geometric Methods in Mathematical Physics" (Kaciveli, 1993), Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht, (1996), 73-109.

[24]

P. Loreti and B. Rao, Optimal energy decay rate for partially damped systems by spectral compensation, SIAM J. Control Optim., 45 (2006), 1612-1632. doi: 10.1137/S0363012903437319.

[25]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems," Progress in Nonlinear Differential Equations and their Applications, 16, Birkhäuser Verlag, Basel, 1995.

[26]

A. Lunardi, "Interpolation Theory," 2nd edition, Appunti, Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes, Scuola Normale Superiore di Pisa (New Series)], Edizioni della Normale, Pisa, 2009.

[27]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.

[28]

J.-P. Raymond and M. Vanninathan, Null controllability in a fluid-solid structure model, J. Differential Equations, 248 (2010), 1826-1865. doi: 10.1016/j.jde.2009.09.015.

[29]

D. Russell, A general framework for the study of indirect damping mechanisms in elastic systems, J. Math. Anal. Appl., 173 (1993), 339-358. doi: 10.1006/jmaa.1993.1071.

[30]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators," 2nd edition, Johann Ambrosius Barth, Heidelberg, 1995.

[31]

W. Youssef, "Contrôle et Stabilisation de Système Élastiques Couplés," Ph.D thesis, University Paul Verlaine-Metz, 2009.

[32]

X. Zhang and E. Zuazua, Asymptotic behavior of a hyperbolic-parabolic coupled system arising in fluid-structure interaction, in "Free Boundary Problems," Internat. Ser. Numer. Math., 154, Birkhäuser, Basel, (2007), 445-455.

[1]

Roberto Guglielmi. Indirect stabilization of hyperbolic systems through resolvent estimates. Evolution Equations and Control Theory, 2017, 6 (1) : 59-75. doi: 10.3934/eect.2017004

[2]

Ayechi Radhia, Khenissi Moez. Local indirect stabilization of same coupled evolution systems through resolvent estimates. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1573-1597. doi: 10.3934/dcdss.2022099

[3]

Louis Tebou. Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Mathematical Control and Related Fields, 2012, 2 (1) : 45-60. doi: 10.3934/mcrf.2012.2.45

[4]

Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016

[5]

Goro Akagi, Mitsuharu Ôtani. Evolution equations and subdifferentials in Banach spaces. Conference Publications, 2003, 2003 (Special) : 11-20. doi: 10.3934/proc.2003.2003.11

[6]

Tomás Caraballo, P.E. Kloeden, B. Schmalfuss. Stabilization of stationary solutions of evolution equations by noise. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1199-1212. doi: 10.3934/dcdsb.2006.6.1199

[7]

Kais Ammari, Eduard Feireisl, Serge Nicaise. Polynomial stabilization of some dissipative hyperbolic systems. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4371-4388. doi: 10.3934/dcds.2014.34.4371

[8]

Serge Nicaise. Control and stabilization of 2 × 2 hyperbolic systems on graphs. Mathematical Control and Related Fields, 2017, 7 (1) : 53-72. doi: 10.3934/mcrf.2017004

[9]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3641-3657. doi: 10.3934/dcdss.2020434

[10]

Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i

[11]

Louis Tebou. Stabilization of some coupled hyperbolic/parabolic equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1601-1620. doi: 10.3934/dcdsb.2010.14.1601

[12]

Xiaoyu Fu. Stabilization of hyperbolic equations with mixed boundary conditions. Mathematical Control and Related Fields, 2015, 5 (4) : 761-780. doi: 10.3934/mcrf.2015.5.761

[13]

Stefano Bianchini. Interaction estimates and Glimm functional for general hyperbolic systems. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 133-166. doi: 10.3934/dcds.2003.9.133

[14]

Fatihcan M. Atay, Lavinia Roncoroni. Lumpability of linear evolution Equations in Banach spaces. Evolution Equations and Control Theory, 2017, 6 (1) : 15-34. doi: 10.3934/eect.2017002

[15]

Jochen Schmid. Stabilization of port-Hamiltonian systems with discontinuous energy densities. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2021063

[16]

Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control and Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121

[17]

Annegret Glitzky. Energy estimates for electro-reaction-diffusion systems with partly fast kinetics. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 159-174. doi: 10.3934/dcds.2009.25.159

[18]

Xuan-Xuan Xi, Mimi Hou, Xian-Feng Zhou, Yanhua Wen. Approximate controllability of fractional neutral evolution systems of hyperbolic type. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021035

[19]

Daliang Zhao, Yansheng Liu. Controllability of nonlinear fractional evolution systems in Banach spaces: A survey. Electronic Research Archive, 2021, 29 (5) : 3551-3580. doi: 10.3934/era.2021083

[20]

Matthias Eller, Daniel Toundykov. Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems. Evolution Equations and Control Theory, 2012, 1 (2) : 271-296. doi: 10.3934/eect.2012.1.271

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (10)

[Back to Top]