Citation: |
[1] |
R. Azencott, Formule de Taylor stochastique et développement asymptotique d'intégrales de Feynman, in "Seminar on Probability," XVI, Supplement, Lecture Notes in Math., 921, Springer, Berlin-New York, (1982), 237-285. |
[2] |
G. Ben Arous, Flots et séries de Taylor stochastiques, Probab. Theory Related Fields, 81 (1989), 29-77.doi: 10.1007/BF00343737. |
[3] |
R. Buckdahn and J. Ma, Pathwise stochastic Taylor expansions and stochastic viscosity solutions for fully nonlinear stochastic PDEs, Ann. Probab., 30 (2002), 1131-1171.doi: 10.1214/aop/1029867123. |
[4] |
R. Buckdahn and J. Ma, Stochastic viscosity solutions for nonlinear stochastic partial differential equations. I, Stochastic Process. Appl., 93 (2001), 181-204.doi: 10.1016/S0304-4149(00)00093-4. |
[5] |
R. Buckdahn and J. Ma, Stochastic viscosity solutions for nonlinear stochastic partial differential equations. II, Stochastic Process. Appl., 93 (2001), 205-228.doi: 10.1016/S0304-4149(00)00092-2. |
[6] |
M. Caruana, P. Friz, and H. Oberhauser, A (rough) pathwise approach to fully non-linear stochastic partial differential equations, Annals IHP (C), Nonlinear Analysis, 28 (2011), 27-46. |
[7] |
T. Hida and N. Ikeda, Analysis on Hilbert space with reproducing kernel arising from multiple Wiener integral, in "Proc. Fifth Berkeley Symp. Math. Stat. Probab." (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1, Univ. Calif. Press, Berkeley, Calif., (1967), 117-143. |
[8] |
A. Jentzen and P. E. Kloeden, Pathwise Taylor schemes for random ordinary differential equations, BIT, 49 (2009), 113-140.doi: 10.1007/s10543-009-0211-6. |
[9] |
P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations," Applications of Mathematics (New York), 23, Springer-Verlag, Berlin, 1992. |
[10] |
H. Kunita, "Stochastic Flows and Stochastic Differential Equations," Cambridge Studies in Advanced Mathematics, 24, Cambridge University Press, Cambridge, 1990. |
[11] |
P.-L. Lions and P. E. Souganidis, Fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 1085-1092.doi: 10.1016/S0764-4442(98)80067-0. |
[12] |
P.-L. Lions and P. E. Souganidis, Fully nonlinear stochastic partial differential equations: Non-smooth equations and applications, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 735-741.doi: 10.1016/S0764-4442(98)80161-4. |
[13] |
P.-L. Lions and P. E. Souganidis, Équations aux dérivées partielles stochastiques nonlinéaires et solutions de viscosité, in "Seminaire: Équations aux Dérivées Partielles," 1998-1999, Sémin. Équ. Dériv. Partielles, Exp. No. I, 15 pp., École Polytech, Palaiseau, 1999. |
[14] |
P.-L. Lions and P. E. Souganidis, Fully nonlinear stochastic PDE with semilinear stochastic dependence, C. R. Acad. Sci. Paris Sér. I Math., 331 (2000), 617-624.doi: 10.1016/S0764-4442(00)00583-8. |
[15] |
P.-L. Lions and P. E. Souganidis, Viscosity solutions of fully nonlinear stochastic partial differential equations. Viscosity solutions of differential equations and related topics, (Japanese) (Kyoto, 2001), RIMS Kokyuroku, 1287 (2002), 58-65. |
[16] |
T. Lyons, M. Caruana and T. Lévy, "Differential Equations Driven by Rough Paths," Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6-24, 2004, With an introduction concerning the Summer School by Jean Picard, Lecture Notes in Mathematics, 1908, Springer, Berlin, 2007. |
[17] |
D. Nualart, "The Malliavin Calculus and Related Topics," Second edition, Probability and its Applications (New York), Springer-Verlag, Berlin, 2006. |
[18] |
D. Revuz and M. Yor, "Continuous Martingales and Brownian Motion," Third edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293, Springer-Verlag, Berlin, 1991. |