December  2011, 1(4): 469-491. doi: 10.3934/mcrf.2011.1.469

Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction

1. 

Lehrstuhl 2 für Angewandte Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 11, 91058 Erlangen, Germany, Germany

Received  December 2010 Revised  June 2011 Published  November 2011

We consider the isothermal Euler equations with friction that model the gas flow through pipes. We present a method of time-delayed boundary feedback stabilization to stabilize the isothermal Euler equations locally around a given stationary subcritical state on a finite time interval. The considered control system is a quasilinear hyperbolic system with a source term. For this system we introduce a Lyapunov function with delay terms and develop time-delayed boundary controls for which the Lyapunov function decays exponentially with time. We present the stabilization method for a single gas pipe and for a star-shaped network of pipes.
Citation: Martin Gugat, Markus Dick. Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction. Mathematical Control & Related Fields, 2011, 1 (4) : 469-491. doi: 10.3934/mcrf.2011.1.469
References:
[1]

M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations,, Netw. Heterog. Media, 1 (2006), 295.  doi: 10.3934/nhm.2006.1.295.  Google Scholar

[2]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41.  doi: 10.3934/nhm.2006.1.41.  Google Scholar

[3]

J. F. Bonnans and J. André, Optimal structure of gas transmission trunklines,, Research Report, (2009).   Google Scholar

[4]

R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals,, SIAM J. Control Optim., 48 (2009), 2032.  doi: 10.1137/080716372.  Google Scholar

[5]

J.-M. Coron, "Control and Nonlinearity,", Mathematical Surveys and Monographs, 136 (2007).   Google Scholar

[6]

J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Trans. Automat. Control, 52 (2007), 2.  doi: 10.1109/TAC.2006.887903.  Google Scholar

[7]

M. Dick, M. Gugat and G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes,, Netw. Heterog. Media, 5 (2010), 691.   Google Scholar

[8]

M. Gugat, Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives,, Adv. Model. Optim., 7 (2005), 9.   Google Scholar

[9]

M. Gugat, Boundary feedback stabilization by time delay for one-dimensional wave equations,, IMA J. Math. Control Inform., 27 (2010), 189.  doi: 10.1093/imamci/dnq007.  Google Scholar

[10]

M. Gugat, Stabilizing a vibrating string by time delay,, in, (2010), 23.  doi: 10.1109/MMAR.2010.5587248.  Google Scholar

[11]

M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks,, ESAIM Control Optim. Calc. Var., 17 (2011), 28.  doi: 10.1051/cocv/2009035.  Google Scholar

[12]

M. Gugat, M. Herty and V. Schleper, Flow control in gas networks: Exact controllability to a given demand,, Math. Methods Appl. Sci., 34 (2011), 745.  doi: 10.1002/mma.1394.  Google Scholar

[13]

M. Gugat and M. Sigalotti, Stars of vibrating strings: Switching boundary feedback stabilization,, Netw. Heterog. Media, 5 (2010), 299.  doi: 10.3934/nhm.2010.5.299.  Google Scholar

[14]

M. Herty, J. Mohring and V. Sachers, A new model for gas flow in pipe networks,, Math. Methods Appl. Sci., 33 (2010), 845.   Google Scholar

[15]

M. Herty and V. Sachers, Adjoint calculus for optimization of gas networks,, Netw. Heterog. Media, 2 (2007), 733.  doi: 10.3934/nhm.2007.2.733.  Google Scholar

[16]

T. Li, "Controllability and Observability for Quasilinear Hyperbolic Systems,", AIMS Series on Applied Mathematics, 3 (2010).   Google Scholar

[17]

T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions,, Discrete Contin. Dyn. Syst., 28 (2010), 243.  doi: 10.3934/dcds.2010.28.243.  Google Scholar

[18]

A. Marigo, Entropic solutions for irrigation networks,, SIAM J. Appl. Math., 70 (): 1711.  doi: 10.1137/09074783X.  Google Scholar

[19]

S. Nicaise and J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks,, Netw. Heterog. Media, 2 (2007), 425.  doi: 10.3934/nhm.2007.2.425.  Google Scholar

[20]

S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 559.  doi: 10.3934/dcdss.2009.2.559.  Google Scholar

[21]

A. Osiadacz, "Simulation and Analysis of Gas Networks,", Gulf Publishing Company, (1987).   Google Scholar

[22]

A. Osiadacz and M. Chaczykowski, Comparison of isothermal and non-isothermal pipeline gas flow models,, Chemical Engineering J., 81 (2001), 41.  doi: 10.1016/S1385-8947(00)00194-7.  Google Scholar

[23]

M. C. Steinbach, On PDE solution in transient optimization of gas networks,, J. Comput. Appl. Math., 203 (2007), 345.  doi: 10.1016/j.cam.2006.04.018.  Google Scholar

[24]

J. Valein and E. Zuazua, Stabilization of the wave equation on 1-D networks,, SIAM J. Control Optim., 48 (2009), 2771.  doi: 10.1137/080733590.  Google Scholar

[25]

J.-M. Wang, B.-Z. Guo and M. Krstic, Wave equation stabilization by delays equal to even multiples of the wave propagation time,, SIAM J. Control Optim., 49 (2011), 517.  doi: 10.1137/100796261.  Google Scholar

[26]

Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems,, Chinese Ann. Math. Ser. B, 27 (2006), 643.  doi: 10.1007/s11401-005-0520-2.  Google Scholar

show all references

References:
[1]

M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations,, Netw. Heterog. Media, 1 (2006), 295.  doi: 10.3934/nhm.2006.1.295.  Google Scholar

[2]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41.  doi: 10.3934/nhm.2006.1.41.  Google Scholar

[3]

J. F. Bonnans and J. André, Optimal structure of gas transmission trunklines,, Research Report, (2009).   Google Scholar

[4]

R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals,, SIAM J. Control Optim., 48 (2009), 2032.  doi: 10.1137/080716372.  Google Scholar

[5]

J.-M. Coron, "Control and Nonlinearity,", Mathematical Surveys and Monographs, 136 (2007).   Google Scholar

[6]

J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Trans. Automat. Control, 52 (2007), 2.  doi: 10.1109/TAC.2006.887903.  Google Scholar

[7]

M. Dick, M. Gugat and G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes,, Netw. Heterog. Media, 5 (2010), 691.   Google Scholar

[8]

M. Gugat, Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives,, Adv. Model. Optim., 7 (2005), 9.   Google Scholar

[9]

M. Gugat, Boundary feedback stabilization by time delay for one-dimensional wave equations,, IMA J. Math. Control Inform., 27 (2010), 189.  doi: 10.1093/imamci/dnq007.  Google Scholar

[10]

M. Gugat, Stabilizing a vibrating string by time delay,, in, (2010), 23.  doi: 10.1109/MMAR.2010.5587248.  Google Scholar

[11]

M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks,, ESAIM Control Optim. Calc. Var., 17 (2011), 28.  doi: 10.1051/cocv/2009035.  Google Scholar

[12]

M. Gugat, M. Herty and V. Schleper, Flow control in gas networks: Exact controllability to a given demand,, Math. Methods Appl. Sci., 34 (2011), 745.  doi: 10.1002/mma.1394.  Google Scholar

[13]

M. Gugat and M. Sigalotti, Stars of vibrating strings: Switching boundary feedback stabilization,, Netw. Heterog. Media, 5 (2010), 299.  doi: 10.3934/nhm.2010.5.299.  Google Scholar

[14]

M. Herty, J. Mohring and V. Sachers, A new model for gas flow in pipe networks,, Math. Methods Appl. Sci., 33 (2010), 845.   Google Scholar

[15]

M. Herty and V. Sachers, Adjoint calculus for optimization of gas networks,, Netw. Heterog. Media, 2 (2007), 733.  doi: 10.3934/nhm.2007.2.733.  Google Scholar

[16]

T. Li, "Controllability and Observability for Quasilinear Hyperbolic Systems,", AIMS Series on Applied Mathematics, 3 (2010).   Google Scholar

[17]

T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions,, Discrete Contin. Dyn. Syst., 28 (2010), 243.  doi: 10.3934/dcds.2010.28.243.  Google Scholar

[18]

A. Marigo, Entropic solutions for irrigation networks,, SIAM J. Appl. Math., 70 (): 1711.  doi: 10.1137/09074783X.  Google Scholar

[19]

S. Nicaise and J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks,, Netw. Heterog. Media, 2 (2007), 425.  doi: 10.3934/nhm.2007.2.425.  Google Scholar

[20]

S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 559.  doi: 10.3934/dcdss.2009.2.559.  Google Scholar

[21]

A. Osiadacz, "Simulation and Analysis of Gas Networks,", Gulf Publishing Company, (1987).   Google Scholar

[22]

A. Osiadacz and M. Chaczykowski, Comparison of isothermal and non-isothermal pipeline gas flow models,, Chemical Engineering J., 81 (2001), 41.  doi: 10.1016/S1385-8947(00)00194-7.  Google Scholar

[23]

M. C. Steinbach, On PDE solution in transient optimization of gas networks,, J. Comput. Appl. Math., 203 (2007), 345.  doi: 10.1016/j.cam.2006.04.018.  Google Scholar

[24]

J. Valein and E. Zuazua, Stabilization of the wave equation on 1-D networks,, SIAM J. Control Optim., 48 (2009), 2771.  doi: 10.1137/080733590.  Google Scholar

[25]

J.-M. Wang, B.-Z. Guo and M. Krstic, Wave equation stabilization by delays equal to even multiples of the wave propagation time,, SIAM J. Control Optim., 49 (2011), 517.  doi: 10.1137/100796261.  Google Scholar

[26]

Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems,, Chinese Ann. Math. Ser. B, 27 (2006), 643.  doi: 10.1007/s11401-005-0520-2.  Google Scholar

[1]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[2]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[3]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[4]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[5]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[6]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[7]

Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011

[8]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[9]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[10]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[11]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[12]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[13]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[14]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[15]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[16]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[17]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[18]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[19]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[20]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (18)

Other articles
by authors

[Back to Top]