December  2011, 1(4): 469-491. doi: 10.3934/mcrf.2011.1.469

Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction

1. 

Lehrstuhl 2 für Angewandte Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 11, 91058 Erlangen, Germany, Germany

Received  December 2010 Revised  June 2011 Published  November 2011

We consider the isothermal Euler equations with friction that model the gas flow through pipes. We present a method of time-delayed boundary feedback stabilization to stabilize the isothermal Euler equations locally around a given stationary subcritical state on a finite time interval. The considered control system is a quasilinear hyperbolic system with a source term. For this system we introduce a Lyapunov function with delay terms and develop time-delayed boundary controls for which the Lyapunov function decays exponentially with time. We present the stabilization method for a single gas pipe and for a star-shaped network of pipes.
Citation: Martin Gugat, Markus Dick. Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction. Mathematical Control & Related Fields, 2011, 1 (4) : 469-491. doi: 10.3934/mcrf.2011.1.469
References:
[1]

M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations,, Netw. Heterog. Media, 1 (2006), 295.  doi: 10.3934/nhm.2006.1.295.  Google Scholar

[2]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41.  doi: 10.3934/nhm.2006.1.41.  Google Scholar

[3]

J. F. Bonnans and J. André, Optimal structure of gas transmission trunklines,, Research Report, (2009).   Google Scholar

[4]

R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals,, SIAM J. Control Optim., 48 (2009), 2032.  doi: 10.1137/080716372.  Google Scholar

[5]

J.-M. Coron, "Control and Nonlinearity,", Mathematical Surveys and Monographs, 136 (2007).   Google Scholar

[6]

J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Trans. Automat. Control, 52 (2007), 2.  doi: 10.1109/TAC.2006.887903.  Google Scholar

[7]

M. Dick, M. Gugat and G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes,, Netw. Heterog. Media, 5 (2010), 691.   Google Scholar

[8]

M. Gugat, Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives,, Adv. Model. Optim., 7 (2005), 9.   Google Scholar

[9]

M. Gugat, Boundary feedback stabilization by time delay for one-dimensional wave equations,, IMA J. Math. Control Inform., 27 (2010), 189.  doi: 10.1093/imamci/dnq007.  Google Scholar

[10]

M. Gugat, Stabilizing a vibrating string by time delay,, in, (2010), 23.  doi: 10.1109/MMAR.2010.5587248.  Google Scholar

[11]

M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks,, ESAIM Control Optim. Calc. Var., 17 (2011), 28.  doi: 10.1051/cocv/2009035.  Google Scholar

[12]

M. Gugat, M. Herty and V. Schleper, Flow control in gas networks: Exact controllability to a given demand,, Math. Methods Appl. Sci., 34 (2011), 745.  doi: 10.1002/mma.1394.  Google Scholar

[13]

M. Gugat and M. Sigalotti, Stars of vibrating strings: Switching boundary feedback stabilization,, Netw. Heterog. Media, 5 (2010), 299.  doi: 10.3934/nhm.2010.5.299.  Google Scholar

[14]

M. Herty, J. Mohring and V. Sachers, A new model for gas flow in pipe networks,, Math. Methods Appl. Sci., 33 (2010), 845.   Google Scholar

[15]

M. Herty and V. Sachers, Adjoint calculus for optimization of gas networks,, Netw. Heterog. Media, 2 (2007), 733.  doi: 10.3934/nhm.2007.2.733.  Google Scholar

[16]

T. Li, "Controllability and Observability for Quasilinear Hyperbolic Systems,", AIMS Series on Applied Mathematics, 3 (2010).   Google Scholar

[17]

T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions,, Discrete Contin. Dyn. Syst., 28 (2010), 243.  doi: 10.3934/dcds.2010.28.243.  Google Scholar

[18]

A. Marigo, Entropic solutions for irrigation networks,, SIAM J. Appl. Math., 70 (): 1711.  doi: 10.1137/09074783X.  Google Scholar

[19]

S. Nicaise and J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks,, Netw. Heterog. Media, 2 (2007), 425.  doi: 10.3934/nhm.2007.2.425.  Google Scholar

[20]

S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 559.  doi: 10.3934/dcdss.2009.2.559.  Google Scholar

[21]

A. Osiadacz, "Simulation and Analysis of Gas Networks,", Gulf Publishing Company, (1987).   Google Scholar

[22]

A. Osiadacz and M. Chaczykowski, Comparison of isothermal and non-isothermal pipeline gas flow models,, Chemical Engineering J., 81 (2001), 41.  doi: 10.1016/S1385-8947(00)00194-7.  Google Scholar

[23]

M. C. Steinbach, On PDE solution in transient optimization of gas networks,, J. Comput. Appl. Math., 203 (2007), 345.  doi: 10.1016/j.cam.2006.04.018.  Google Scholar

[24]

J. Valein and E. Zuazua, Stabilization of the wave equation on 1-D networks,, SIAM J. Control Optim., 48 (2009), 2771.  doi: 10.1137/080733590.  Google Scholar

[25]

J.-M. Wang, B.-Z. Guo and M. Krstic, Wave equation stabilization by delays equal to even multiples of the wave propagation time,, SIAM J. Control Optim., 49 (2011), 517.  doi: 10.1137/100796261.  Google Scholar

[26]

Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems,, Chinese Ann. Math. Ser. B, 27 (2006), 643.  doi: 10.1007/s11401-005-0520-2.  Google Scholar

show all references

References:
[1]

M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations,, Netw. Heterog. Media, 1 (2006), 295.  doi: 10.3934/nhm.2006.1.295.  Google Scholar

[2]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41.  doi: 10.3934/nhm.2006.1.41.  Google Scholar

[3]

J. F. Bonnans and J. André, Optimal structure of gas transmission trunklines,, Research Report, (2009).   Google Scholar

[4]

R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals,, SIAM J. Control Optim., 48 (2009), 2032.  doi: 10.1137/080716372.  Google Scholar

[5]

J.-M. Coron, "Control and Nonlinearity,", Mathematical Surveys and Monographs, 136 (2007).   Google Scholar

[6]

J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Trans. Automat. Control, 52 (2007), 2.  doi: 10.1109/TAC.2006.887903.  Google Scholar

[7]

M. Dick, M. Gugat and G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes,, Netw. Heterog. Media, 5 (2010), 691.   Google Scholar

[8]

M. Gugat, Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives,, Adv. Model. Optim., 7 (2005), 9.   Google Scholar

[9]

M. Gugat, Boundary feedback stabilization by time delay for one-dimensional wave equations,, IMA J. Math. Control Inform., 27 (2010), 189.  doi: 10.1093/imamci/dnq007.  Google Scholar

[10]

M. Gugat, Stabilizing a vibrating string by time delay,, in, (2010), 23.  doi: 10.1109/MMAR.2010.5587248.  Google Scholar

[11]

M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks,, ESAIM Control Optim. Calc. Var., 17 (2011), 28.  doi: 10.1051/cocv/2009035.  Google Scholar

[12]

M. Gugat, M. Herty and V. Schleper, Flow control in gas networks: Exact controllability to a given demand,, Math. Methods Appl. Sci., 34 (2011), 745.  doi: 10.1002/mma.1394.  Google Scholar

[13]

M. Gugat and M. Sigalotti, Stars of vibrating strings: Switching boundary feedback stabilization,, Netw. Heterog. Media, 5 (2010), 299.  doi: 10.3934/nhm.2010.5.299.  Google Scholar

[14]

M. Herty, J. Mohring and V. Sachers, A new model for gas flow in pipe networks,, Math. Methods Appl. Sci., 33 (2010), 845.   Google Scholar

[15]

M. Herty and V. Sachers, Adjoint calculus for optimization of gas networks,, Netw. Heterog. Media, 2 (2007), 733.  doi: 10.3934/nhm.2007.2.733.  Google Scholar

[16]

T. Li, "Controllability and Observability for Quasilinear Hyperbolic Systems,", AIMS Series on Applied Mathematics, 3 (2010).   Google Scholar

[17]

T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions,, Discrete Contin. Dyn. Syst., 28 (2010), 243.  doi: 10.3934/dcds.2010.28.243.  Google Scholar

[18]

A. Marigo, Entropic solutions for irrigation networks,, SIAM J. Appl. Math., 70 (): 1711.  doi: 10.1137/09074783X.  Google Scholar

[19]

S. Nicaise and J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks,, Netw. Heterog. Media, 2 (2007), 425.  doi: 10.3934/nhm.2007.2.425.  Google Scholar

[20]

S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 559.  doi: 10.3934/dcdss.2009.2.559.  Google Scholar

[21]

A. Osiadacz, "Simulation and Analysis of Gas Networks,", Gulf Publishing Company, (1987).   Google Scholar

[22]

A. Osiadacz and M. Chaczykowski, Comparison of isothermal and non-isothermal pipeline gas flow models,, Chemical Engineering J., 81 (2001), 41.  doi: 10.1016/S1385-8947(00)00194-7.  Google Scholar

[23]

M. C. Steinbach, On PDE solution in transient optimization of gas networks,, J. Comput. Appl. Math., 203 (2007), 345.  doi: 10.1016/j.cam.2006.04.018.  Google Scholar

[24]

J. Valein and E. Zuazua, Stabilization of the wave equation on 1-D networks,, SIAM J. Control Optim., 48 (2009), 2771.  doi: 10.1137/080733590.  Google Scholar

[25]

J.-M. Wang, B.-Z. Guo and M. Krstic, Wave equation stabilization by delays equal to even multiples of the wave propagation time,, SIAM J. Control Optim., 49 (2011), 517.  doi: 10.1137/100796261.  Google Scholar

[26]

Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems,, Chinese Ann. Math. Ser. B, 27 (2006), 643.  doi: 10.1007/s11401-005-0520-2.  Google Scholar

[1]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[2]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[3]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[4]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[5]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[6]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[7]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[8]

Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021006

[9]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[10]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[11]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[12]

Jingni Guo, Junxiang Xu, Zhenggang He, Wei Liao. Research on cascading failure modes and attack strategies of multimodal transport network. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2020159

[13]

Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021016

[14]

Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020127

[15]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[16]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[17]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[18]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[19]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

[20]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (75)
  • HTML views (0)
  • Cited by (18)

Other articles
by authors

[Back to Top]