December  2011, 1(4): 469-491. doi: 10.3934/mcrf.2011.1.469

Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction

1. 

Lehrstuhl 2 für Angewandte Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 11, 91058 Erlangen, Germany, Germany

Received  December 2010 Revised  June 2011 Published  November 2011

We consider the isothermal Euler equations with friction that model the gas flow through pipes. We present a method of time-delayed boundary feedback stabilization to stabilize the isothermal Euler equations locally around a given stationary subcritical state on a finite time interval. The considered control system is a quasilinear hyperbolic system with a source term. For this system we introduce a Lyapunov function with delay terms and develop time-delayed boundary controls for which the Lyapunov function decays exponentially with time. We present the stabilization method for a single gas pipe and for a star-shaped network of pipes.
Citation: Martin Gugat, Markus Dick. Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction. Mathematical Control & Related Fields, 2011, 1 (4) : 469-491. doi: 10.3934/mcrf.2011.1.469
References:
[1]

M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314. doi: 10.3934/nhm.2006.1.295.  Google Scholar

[2]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56. doi: 10.3934/nhm.2006.1.41.  Google Scholar

[3]

J. F. Bonnans and J. André, Optimal structure of gas transmission trunklines, Research Report, available at Centre de recherche INRIA Saclay, January 7, 2009. Google Scholar

[4]

R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050. doi: 10.1137/080716372.  Google Scholar

[5]

J.-M. Coron, "Control and Nonlinearity," Mathematical Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007.  Google Scholar

[6]

J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Trans. Automat. Control, 52 (2007), 2-11. doi: 10.1109/TAC.2006.887903.  Google Scholar

[7]

M. Dick, M. Gugat and G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes, Netw. Heterog. Media, 5 (2010), 691-709.  Google Scholar

[8]

M. Gugat, Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives, Adv. Model. Optim., 7 (2005), 9-37.  Google Scholar

[9]

M. Gugat, Boundary feedback stabilization by time delay for one-dimensional wave equations, IMA J. Math. Control Inform., 27 (2010), 189-203. doi: 10.1093/imamci/dnq007.  Google Scholar

[10]

M. Gugat, Stabilizing a vibrating string by time delay, in "15th International Conference on Methods and Models in Automation and Robotics (MMAR)," Miedzyzdroje, August 23-26, (2010), 144-147. doi: 10.1109/MMAR.2010.5587248.  Google Scholar

[11]

M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks, ESAIM Control Optim. Calc. Var., 17 (2011), 28-51. doi: 10.1051/cocv/2009035.  Google Scholar

[12]

M. Gugat, M. Herty and V. Schleper, Flow control in gas networks: Exact controllability to a given demand, Math. Methods Appl. Sci., 34 (2011), 745-757. doi: 10.1002/mma.1394.  Google Scholar

[13]

M. Gugat and M. Sigalotti, Stars of vibrating strings: Switching boundary feedback stabilization, Netw. Heterog. Media, 5 (2010), 299-314. doi: 10.3934/nhm.2010.5.299.  Google Scholar

[14]

M. Herty, J. Mohring and V. Sachers, A new model for gas flow in pipe networks, Math. Methods Appl. Sci., 33 (2010), 845-855.  Google Scholar

[15]

M. Herty and V. Sachers, Adjoint calculus for optimization of gas networks, Netw. Heterog. Media, 2 (2007), 733-750. doi: 10.3934/nhm.2007.2.733.  Google Scholar

[16]

T. Li, "Controllability and Observability for Quasilinear Hyperbolic Systems," AIMS Series on Applied Mathematics, 3, American Institute of Mathematical Sciences, Springfield, MO, Higher Education Press, Beijing, 2010.  Google Scholar

[17]

T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions, Discrete Contin. Dyn. Syst., 28 (2010), 243-257. doi: 10.3934/dcds.2010.28.243.  Google Scholar

[18]

A. Marigo, Entropic solutions for irrigation networks,, SIAM J. Appl. Math., 70 (): 1711.  doi: 10.1137/09074783X.  Google Scholar

[19]

S. Nicaise and J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks, Netw. Heterog. Media, 2 (2007), 425-479. doi: 10.3934/nhm.2007.2.425.  Google Scholar

[20]

S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 559-581. doi: 10.3934/dcdss.2009.2.559.  Google Scholar

[21]

A. Osiadacz, "Simulation and Analysis of Gas Networks," Gulf Publishing Company, Houston, 1987. Google Scholar

[22]

A. Osiadacz and M. Chaczykowski, Comparison of isothermal and non-isothermal pipeline gas flow models, Chemical Engineering J., 81 (2001), 41-51. doi: 10.1016/S1385-8947(00)00194-7.  Google Scholar

[23]

M. C. Steinbach, On PDE solution in transient optimization of gas networks, J. Comput. Appl. Math., 203 (2007), 345-361. doi: 10.1016/j.cam.2006.04.018.  Google Scholar

[24]

J. Valein and E. Zuazua, Stabilization of the wave equation on 1-D networks, SIAM J. Control Optim., 48 (2009), 2771-2797. doi: 10.1137/080733590.  Google Scholar

[25]

J.-M. Wang, B.-Z. Guo and M. Krstic, Wave equation stabilization by delays equal to even multiples of the wave propagation time, SIAM J. Control Optim., 49 (2011), 517-554. doi: 10.1137/100796261.  Google Scholar

[26]

Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems, Chinese Ann. Math. Ser. B, 27 (2006), 643-656. doi: 10.1007/s11401-005-0520-2.  Google Scholar

show all references

References:
[1]

M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314. doi: 10.3934/nhm.2006.1.295.  Google Scholar

[2]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56. doi: 10.3934/nhm.2006.1.41.  Google Scholar

[3]

J. F. Bonnans and J. André, Optimal structure of gas transmission trunklines, Research Report, available at Centre de recherche INRIA Saclay, January 7, 2009. Google Scholar

[4]

R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050. doi: 10.1137/080716372.  Google Scholar

[5]

J.-M. Coron, "Control and Nonlinearity," Mathematical Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007.  Google Scholar

[6]

J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Trans. Automat. Control, 52 (2007), 2-11. doi: 10.1109/TAC.2006.887903.  Google Scholar

[7]

M. Dick, M. Gugat and G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes, Netw. Heterog. Media, 5 (2010), 691-709.  Google Scholar

[8]

M. Gugat, Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives, Adv. Model. Optim., 7 (2005), 9-37.  Google Scholar

[9]

M. Gugat, Boundary feedback stabilization by time delay for one-dimensional wave equations, IMA J. Math. Control Inform., 27 (2010), 189-203. doi: 10.1093/imamci/dnq007.  Google Scholar

[10]

M. Gugat, Stabilizing a vibrating string by time delay, in "15th International Conference on Methods and Models in Automation and Robotics (MMAR)," Miedzyzdroje, August 23-26, (2010), 144-147. doi: 10.1109/MMAR.2010.5587248.  Google Scholar

[11]

M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks, ESAIM Control Optim. Calc. Var., 17 (2011), 28-51. doi: 10.1051/cocv/2009035.  Google Scholar

[12]

M. Gugat, M. Herty and V. Schleper, Flow control in gas networks: Exact controllability to a given demand, Math. Methods Appl. Sci., 34 (2011), 745-757. doi: 10.1002/mma.1394.  Google Scholar

[13]

M. Gugat and M. Sigalotti, Stars of vibrating strings: Switching boundary feedback stabilization, Netw. Heterog. Media, 5 (2010), 299-314. doi: 10.3934/nhm.2010.5.299.  Google Scholar

[14]

M. Herty, J. Mohring and V. Sachers, A new model for gas flow in pipe networks, Math. Methods Appl. Sci., 33 (2010), 845-855.  Google Scholar

[15]

M. Herty and V. Sachers, Adjoint calculus for optimization of gas networks, Netw. Heterog. Media, 2 (2007), 733-750. doi: 10.3934/nhm.2007.2.733.  Google Scholar

[16]

T. Li, "Controllability and Observability for Quasilinear Hyperbolic Systems," AIMS Series on Applied Mathematics, 3, American Institute of Mathematical Sciences, Springfield, MO, Higher Education Press, Beijing, 2010.  Google Scholar

[17]

T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions, Discrete Contin. Dyn. Syst., 28 (2010), 243-257. doi: 10.3934/dcds.2010.28.243.  Google Scholar

[18]

A. Marigo, Entropic solutions for irrigation networks,, SIAM J. Appl. Math., 70 (): 1711.  doi: 10.1137/09074783X.  Google Scholar

[19]

S. Nicaise and J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks, Netw. Heterog. Media, 2 (2007), 425-479. doi: 10.3934/nhm.2007.2.425.  Google Scholar

[20]

S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 559-581. doi: 10.3934/dcdss.2009.2.559.  Google Scholar

[21]

A. Osiadacz, "Simulation and Analysis of Gas Networks," Gulf Publishing Company, Houston, 1987. Google Scholar

[22]

A. Osiadacz and M. Chaczykowski, Comparison of isothermal and non-isothermal pipeline gas flow models, Chemical Engineering J., 81 (2001), 41-51. doi: 10.1016/S1385-8947(00)00194-7.  Google Scholar

[23]

M. C. Steinbach, On PDE solution in transient optimization of gas networks, J. Comput. Appl. Math., 203 (2007), 345-361. doi: 10.1016/j.cam.2006.04.018.  Google Scholar

[24]

J. Valein and E. Zuazua, Stabilization of the wave equation on 1-D networks, SIAM J. Control Optim., 48 (2009), 2771-2797. doi: 10.1137/080733590.  Google Scholar

[25]

J.-M. Wang, B.-Z. Guo and M. Krstic, Wave equation stabilization by delays equal to even multiples of the wave propagation time, SIAM J. Control Optim., 49 (2011), 517-554. doi: 10.1137/100796261.  Google Scholar

[26]

Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems, Chinese Ann. Math. Ser. B, 27 (2006), 643-656. doi: 10.1007/s11401-005-0520-2.  Google Scholar

[1]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[2]

Markus Dick, Martin Gugat, Günter Leugering. A strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 225-244. doi: 10.3934/naco.2011.1.225

[3]

Abdelkarim Kelleche, Nasser-Eddine Tatar. Existence and stabilization of a Kirchhoff moving string with a delay in the boundary or in the internal feedback. Evolution Equations & Control Theory, 2018, 7 (4) : 599-616. doi: 10.3934/eect.2018029

[4]

Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021027

[5]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[6]

Bernold Fiedler, Isabelle Schneider. Stabilized rapid oscillations in a delay equation: Feedback control by a small resonant delay. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1145-1185. doi: 10.3934/dcdss.2020068

[7]

Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052

[8]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[9]

Qingwen Hu, Huan Zhang. Stabilization of turning processes using spindle feedback with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4329-4360. doi: 10.3934/dcdsb.2018167

[10]

Gilbert Peralta, Karl Kunisch. Interface stabilization of a parabolic-hyperbolic pde system with delay in the interaction. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 3055-3083. doi: 10.3934/dcds.2018133

[11]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

[12]

Nguyen H. Sau, Vu N. Phat. LP approach to exponential stabilization of singular linear positive time-delay systems via memory state feedback. Journal of Industrial & Management Optimization, 2018, 14 (2) : 583-596. doi: 10.3934/jimo.2017061

[13]

Gen Qi Xu, Siu Pang Yung. Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping. Networks & Heterogeneous Media, 2008, 3 (4) : 723-747. doi: 10.3934/nhm.2008.3.723

[14]

F. Ali Mehmeti, R. Haller-Dintelmann, V. Régnier. Dispersive waves with multiple tunnel effect on a star-shaped network. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 783-791. doi: 10.3934/dcdss.2013.6.783

[15]

Igor Chueshov, Peter E. Kloeden, Meihua Yang. Long term dynamics of second order-in-time stochastic evolution equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 991-1009. doi: 10.3934/dcdsb.2018139

[16]

Mirelson M. Freitas, Anderson J. A. Ramos, Manoel J. Dos Santos, Jamille L.L. Almeida. Dynamics of piezoelectric beams with magnetic effects and delay term. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021015

[17]

Ben Niu, Weihua Jiang. Dynamics of a limit cycle oscillator with extended delay feedback. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1439-1458. doi: 10.3934/dcdsb.2013.18.1439

[18]

Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function. Mathematical Control & Related Fields, 2017, 7 (3) : 419-448. doi: 10.3934/mcrf.2017015

[19]

Serge Nicaise, Julie Valein. Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks. Networks & Heterogeneous Media, 2007, 2 (3) : 425-479. doi: 10.3934/nhm.2007.2.425

[20]

Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations & Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (105)
  • HTML views (0)
  • Cited by (20)

Other articles
by authors

[Back to Top]