December  2011, 1(4): 509-518. doi: 10.3934/mcrf.2011.1.509

Inverse source problem with a final overdetermination for a fractional diffusion equation

1. 

Mathematical Science & Technology Research Lab, Advanced Technology Research Laboratories, Technical Development Bureau, Nippon Steel Corporation, 20-1 Shintomi, Futtsu, Chiba 293-8511, Japan

2. 

Department of Mathematical Sciences, The University of Tokyo, Komaba Meguro Tokyo 153-8914

Received  December 2010 Revised  May 2011 Published  November 2011

For a time fractional diffusion equation with source term, we discuss an inverse problem of determining a spatially varying function of the source by final overdetermining data. We prove that this inverse problem is well-posed in the Hadamard sense except for a discrete set of values of diffusion constants.
Citation: Kenichi Sakamoto, Masahiro Yamamoto. Inverse source problem with a final overdetermination for a fractional diffusion equation. Mathematical Control & Related Fields, 2011, 1 (4) : 509-518. doi: 10.3934/mcrf.2011.1.509
References:
[1]

R. A. Adams, "Sobolev Spaces,", Academic Press, (1975).   Google Scholar

[2]

M. Choulli and M. Yamamoto, An inverse parabolic problem with non-zero initial condition,, Inverse Problems, 13 (1997), 19.  doi: 10.1088/0266-5611/13/1/003.  Google Scholar

[3]

M. Choulli and M. Yamamoto, Generic well-posedness of an inverse parabolic problem--the Hölder-space approach,, Inverse Problems, 12 (1996), 195.  doi: 10.1088/0266-5611/12/3/002.  Google Scholar

[4]

M. Choulli and M. Yamamoto, Generic well-posedness of a linear inverse parabolic problem with diffusion parameters,, J. Inverse Ill-Posed Problems, 7 (1999), 241.  doi: 10.1515/jiip.1999.7.3.241.  Google Scholar

[5]

M. Ginoa, S. Gerbelli and H. E. Roman, Fractional diffusion equation and relaxation in complex viscoelastic materials,, Physica A, 191 (1992), 449.  doi: 10.1016/0378-4371(92)90566-9.  Google Scholar

[6]

R. Gorenflo and F. Mainardi, Fractional calculus: Integral and differential equations of fractional order,, Fractals and Fractional Calculus in Continuum Mechanics. (Edited by A. Carpinteri, (1997), 223.   Google Scholar

[7]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lec. Notes in Math. 840, (1981).   Google Scholar

[8]

K. H. Hoffmann and M. Yamamoto, Generic uniqueness and stability in some inverse parabolic problem,, in, 422 (1993), 49.   Google Scholar

[9]

V. Isakov, Inverse parabolic problems with the final overdetermination,, Comm. Pure Appl. Math., 44 (1991), 185.  doi: 10.1002/cpa.3160440203.  Google Scholar

[10]

F. John, "Partial Differential Equations,", Springer-Verlag, (1982).   Google Scholar

[11]

T. Kato, "Perturbation Theory for Linear Operators,", Springer-Verlag, (1976).   Google Scholar

[12]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, "Theory and Applications of Fractional Differential Equations,", Elsevier, (2006).   Google Scholar

[13]

F. Mainardi, On the initial value problem for the fractional diffusion-wave equation,, Waves and Stability in Continuous Media, (1994), 246.   Google Scholar

[14]

F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation,, Appl. Math. Lett., 9 (1996), 23.  doi: 10.1016/0893-9659(96)00089-4.  Google Scholar

[15]

F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics,, Fractals and Fractional Calculus in Continuum Mechanics. (Edited by A. Carpinteri, (1997), 291.   Google Scholar

[16]

R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry,, Phys. Stat. Sol. B, 133 (1986), 425.  doi: 10.1002/pssb.2221330150.  Google Scholar

[17]

K. B. Oldham and J. Spanier, "The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order,", Academic Press, (1974).   Google Scholar

[18]

I. Podlubny, "Fractional Differential Equations,", Academic Press, (1999).   Google Scholar

[19]

A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, "Methods for Solving Inverse Problems in Mathematical Physics,", Marcel Dekker, (2000).   Google Scholar

[20]

J. Prüss, "Evolutionary Integral Equations and Applications,", Birkhäuser, (1993).   Google Scholar

[21]

H. E. Roman and P. A. Alemany, Continuous-time random walks and the fractional diffusion equation,, J. Phys. A, 27 (1994), 3407.  doi: 10.1088/0305-4470/27/10/017.  Google Scholar

[22]

K. Sakamoto, "Inverse Source Problems for Diffusion Equations,", Ph.D. Thesis, (2010).   Google Scholar

[23]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems,, J. Math. Anal. Appl., 382 (2011), 426.  doi: 10.1016/j.jmaa.2011.04.058.  Google Scholar

show all references

References:
[1]

R. A. Adams, "Sobolev Spaces,", Academic Press, (1975).   Google Scholar

[2]

M. Choulli and M. Yamamoto, An inverse parabolic problem with non-zero initial condition,, Inverse Problems, 13 (1997), 19.  doi: 10.1088/0266-5611/13/1/003.  Google Scholar

[3]

M. Choulli and M. Yamamoto, Generic well-posedness of an inverse parabolic problem--the Hölder-space approach,, Inverse Problems, 12 (1996), 195.  doi: 10.1088/0266-5611/12/3/002.  Google Scholar

[4]

M. Choulli and M. Yamamoto, Generic well-posedness of a linear inverse parabolic problem with diffusion parameters,, J. Inverse Ill-Posed Problems, 7 (1999), 241.  doi: 10.1515/jiip.1999.7.3.241.  Google Scholar

[5]

M. Ginoa, S. Gerbelli and H. E. Roman, Fractional diffusion equation and relaxation in complex viscoelastic materials,, Physica A, 191 (1992), 449.  doi: 10.1016/0378-4371(92)90566-9.  Google Scholar

[6]

R. Gorenflo and F. Mainardi, Fractional calculus: Integral and differential equations of fractional order,, Fractals and Fractional Calculus in Continuum Mechanics. (Edited by A. Carpinteri, (1997), 223.   Google Scholar

[7]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lec. Notes in Math. 840, (1981).   Google Scholar

[8]

K. H. Hoffmann and M. Yamamoto, Generic uniqueness and stability in some inverse parabolic problem,, in, 422 (1993), 49.   Google Scholar

[9]

V. Isakov, Inverse parabolic problems with the final overdetermination,, Comm. Pure Appl. Math., 44 (1991), 185.  doi: 10.1002/cpa.3160440203.  Google Scholar

[10]

F. John, "Partial Differential Equations,", Springer-Verlag, (1982).   Google Scholar

[11]

T. Kato, "Perturbation Theory for Linear Operators,", Springer-Verlag, (1976).   Google Scholar

[12]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, "Theory and Applications of Fractional Differential Equations,", Elsevier, (2006).   Google Scholar

[13]

F. Mainardi, On the initial value problem for the fractional diffusion-wave equation,, Waves and Stability in Continuous Media, (1994), 246.   Google Scholar

[14]

F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation,, Appl. Math. Lett., 9 (1996), 23.  doi: 10.1016/0893-9659(96)00089-4.  Google Scholar

[15]

F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics,, Fractals and Fractional Calculus in Continuum Mechanics. (Edited by A. Carpinteri, (1997), 291.   Google Scholar

[16]

R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry,, Phys. Stat. Sol. B, 133 (1986), 425.  doi: 10.1002/pssb.2221330150.  Google Scholar

[17]

K. B. Oldham and J. Spanier, "The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order,", Academic Press, (1974).   Google Scholar

[18]

I. Podlubny, "Fractional Differential Equations,", Academic Press, (1999).   Google Scholar

[19]

A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, "Methods for Solving Inverse Problems in Mathematical Physics,", Marcel Dekker, (2000).   Google Scholar

[20]

J. Prüss, "Evolutionary Integral Equations and Applications,", Birkhäuser, (1993).   Google Scholar

[21]

H. E. Roman and P. A. Alemany, Continuous-time random walks and the fractional diffusion equation,, J. Phys. A, 27 (1994), 3407.  doi: 10.1088/0305-4470/27/10/017.  Google Scholar

[22]

K. Sakamoto, "Inverse Source Problems for Diffusion Equations,", Ph.D. Thesis, (2010).   Google Scholar

[23]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems,, J. Math. Anal. Appl., 382 (2011), 426.  doi: 10.1016/j.jmaa.2011.04.058.  Google Scholar

[1]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[2]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[3]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[4]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[5]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[6]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[7]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[8]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[9]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[10]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[11]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[12]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[13]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[14]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[15]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[16]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[17]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[18]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[19]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[20]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (94)
  • HTML views (0)
  • Cited by (40)

Other articles
by authors

[Back to Top]