March  2011, 1(1): 61-81. doi: 10.3934/mcrf.2011.1.61

Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain

1. 

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Oh 45221, United States, United States

2. 

Department of Mathematics, University of Dayton, Dayton, OH 45431, United States

Received  October 2010 Revised  January 2011 Published  March 2011

In this paper, we study a class of initial boundary value problem (IBVP) of the Korteweg-de Vries equation posed on a finite interval with nonhomogeneous boundary conditions. The IBVP is known to be locally well-posed, but its global $L^2$- a priori estimate is not available and therefore it is not clear whether its solutions exist globally or blow up in finite time. It is shown in this paper that the solutions exist globally as long as their initial value and the associated boundary data are small, and moreover, those solutions decay exponentially if their boundary data decay exponentially.
Citation: Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61
References:
[1]

J. L. Bona, S. Sun and B.-Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane,, Trans. American Math. Soc., 354 (2001), 427.  doi: 10.1090/S0002-9947-01-02885-9.  Google Scholar

[2]

J. L. Bona, S. M. Sun and B.-Y. Zhang, Forced oscillations of a damped Korteweg-de Vries equation in a quarter plane,, Comm. Contemp. Math, 5 (2003), 369.  doi: 10.1142/S021919970300104X.  Google Scholar

[3]

J. L. Bona, S. Sun and B.-Y. Zhang, A nonhomogeneous boundary value problem for the KdV equation posed on a finite domain,, Commun. Partial Differential Eq., 28 (2003), 1391.  doi: 10.1081/PDE-120024373.  Google Scholar

[4]

J. L. Bona, S. Sun and B.-Y. Zhang, Non-homogeneous boundary value problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane,, Annales de l'Institut Henri Poincaré - Analyse non linéaire, 25 (2008), 1145.   Google Scholar

[5]

J. L. Bona, S. Sun and B.-Y. Zhang, The Korteweg-de Vries equation on a finite domain II,, J. Diff. Eqns, 247 (2009), 2558.  doi: 10.1016/j.jde.2009.07.010.  Google Scholar

[6]

B. A. Bubnov, Generalized boundary value problems for the Korteweg-de Vries equation in bounded domain,, Differential Equations, 15 (1979), 17.   Google Scholar

[7]

B. A. Bubnov, Solvability in the large of nonlinear boundary-value problem for the Korteweg-de Vries equations,, Differential Equations, 16 (1980), 24.   Google Scholar

[8]

J. Colliander and C. Kenig, The generalized Korteweg-de Vries equation on the half line,, Comm. Partial Differential Equations, 27 (2002), 2187.  doi: 10.1081/PDE-120016157.  Google Scholar

[9]

T. Colin and J.-M. Ghidaglia, An initial-boundary-value problem for the Korteweg-de Vries Equation posed on a finite interval,, Adv. Differential Equations, 6 (2001), 1463.   Google Scholar

[10]

P. Constantin, C. Foias, B. Nicolaenko and R. Temam, "Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations,", Applied Mathematical Sciences, 70 (1989).   Google Scholar

[11]

W. Craig and C. E. Wayne, Newton's method and periodic solutions of nonlinear wave equations,, Comm. Pure Appl. Math., 46 (1993), 1409.  doi: 10.1002/cpa.3160461102.  Google Scholar

[12]

A. V. Faminskii, The Cauchy problem and the mixed problem in the half strip for equation of Korteweg-de Vries type,, (Russian) Dinamika Sploshn. Sredy, 162 (1983), 152.   Google Scholar

[13]

A. V. Faminskii, A mixed problem in a semistrip for the Korteweg-de Vries equation and its generalizations,, (Russian), 258 (1988), 54.   Google Scholar

[14]

A. V. Faminskii, Mixed problms for the Korteweg-de Vries equation,, Sbornik: Mathematics, 190 (1999), 903.  doi: 10.1070/SM1999v190n06ABEH000408.  Google Scholar

[15]

A. V. Faminskii, On an initial boundary value problem in a bounded domain for the generalized Korteweg-de Vries equation,, International Conference on Differential and Functional Differential Equations, 8 (2001), 183.   Google Scholar

[16]

A. V. Faminskii, An initial boundary-value problem in a half-strip for the Korteweg-de Vries equation in fractional order Sobelev Spaces,, Comm. Partial Differential Eq., 29 (2004), 1653.  doi: 10.1081/PDE-200040191.  Google Scholar

[17]

A. V. Faminskii, Global well-posedness of two initial-boundary-value problems for the Korteweg-de Vries equation,, Differential Integral Equations, 20 (2007), 601.   Google Scholar

[18]

J.-M. Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite-dimensional dynamical system in the long time,, J. Differential Eqns., 74 (1988), 369.  doi: 10.1016/0022-0396(88)90010-1.  Google Scholar

[19]

J.-M. Ghidaglia, A note on the strong convergence towards attractors of damped forced KdV equations,, J. Differential Eqns., 110 (1994), 356.  doi: 10.1006/jdeq.1994.1071.  Google Scholar

[20]

J. Holmer, The initial-boundary value problem for the Korteweg-de Vries equation,, Comm. Partial Differential Equations, 31 (2006), 1151.  doi: 10.1080/03605300600718503.  Google Scholar

[21]

T. Kato, "Perturbation Theory for Linear Operators,", Dir Grundlehren der mathematischen Wissenschaften, 132 (1966).   Google Scholar

[22]

J. B. Keller and L. Ting, Periodic vibrations of systems governed by nonlinear partial differential equations,, Comm. Pure and Appl. Math., 19 (1966), 371.  doi: 10.1002/cpa.3160190404.  Google Scholar

[23]

J. U. Kim, Forced vibration of an aero-elastic plate,, J. Math. Anal. Appl., 113 (1986), 454.  doi: 10.1016/0022-247X(86)90317-3.  Google Scholar

[24]

G. Kramer and B.-Y. Zhang, Nonhomogeneous boundary value problems of the KdV equation on a bounded domain,, Journal Syst. Sci. & Complexity, 23 (2010), 499.  doi: 10.1007/s11424-010-0143-x.  Google Scholar

[25]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, 44 (1983).   Google Scholar

[26]

I. Rivas, G. Kramer and B.-Y. Zhang, Well-posedness of a class of initial-boundary-value problem for the Kortweg-de Vries equation on a bounded domain,, preprint, ().   Google Scholar

[27]

P. H. Rabinowitz, Periodic solutions of nonlinear hyperbolic differential equations,, Comm. Pure Appl. Math., 20 (1967), 145.  doi: 10.1002/cpa.3160200105.  Google Scholar

[28]

P. H. Rabinowitz, Free vibrations for a semi-linear wave equation,, Comm. Pure Appl. Math., 31 (1978), 31.  doi: 10.1002/cpa.3160310103.  Google Scholar

[29]

G. R. Sell and Y. C. You, Inertial manifolds: the nonselfadjoint case,, J. Diff. Eqns., 96 (1992), 203.  doi: 10.1016/0022-0396(92)90152-D.  Google Scholar

[30]

L. Tartar, Interpolation non linéaire et régularité,, J. Funct. Anal, 9 (1972), 469.  doi: 10.1016/0022-1236(72)90022-5.  Google Scholar

[31]

O. Vejvoda, "Partial Differential Equations: Time-Periodic Solutions,", Mrtinus Nijhoff Publishers, (1981).   Google Scholar

[32]

C. E. Wayne, Periodic solutions of nonlinear partial differential equations,, Notices Amer. Math. Soc., 44 (1997), 895.   Google Scholar

[33]

M. Usman and B.-Y. Zhang, Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability,, J. Systems Sciences and Complexity, 20 (2007), 15.  doi: 10.1007/s11424-007-9025-2.  Google Scholar

[34]

M. Usman and B.-Y. Zhang, Forced oscillations of a class of nonlinear dispersive wave equations and their stability,, Discrete and Continuous Dynamical Systems, 26 (2010), 1509.   Google Scholar

[35]

Y. Yang and B.-Y. Zhang, Forced oscillations of a damped Benjamin-Bona-Mahony equation in a quarter plane,, in, 242 (2005).   Google Scholar

[36]

B.-Y. Zhang, Forced oscillations of a regularized long-wave equation and their global stability,, in, (1999), 456.   Google Scholar

[37]

B.-Y. Zhang, Forced oscillation of the Korteweg-de Vries-Burgers equation and its stability,, in, 218 (1999), 337.   Google Scholar

show all references

References:
[1]

J. L. Bona, S. Sun and B.-Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane,, Trans. American Math. Soc., 354 (2001), 427.  doi: 10.1090/S0002-9947-01-02885-9.  Google Scholar

[2]

J. L. Bona, S. M. Sun and B.-Y. Zhang, Forced oscillations of a damped Korteweg-de Vries equation in a quarter plane,, Comm. Contemp. Math, 5 (2003), 369.  doi: 10.1142/S021919970300104X.  Google Scholar

[3]

J. L. Bona, S. Sun and B.-Y. Zhang, A nonhomogeneous boundary value problem for the KdV equation posed on a finite domain,, Commun. Partial Differential Eq., 28 (2003), 1391.  doi: 10.1081/PDE-120024373.  Google Scholar

[4]

J. L. Bona, S. Sun and B.-Y. Zhang, Non-homogeneous boundary value problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane,, Annales de l'Institut Henri Poincaré - Analyse non linéaire, 25 (2008), 1145.   Google Scholar

[5]

J. L. Bona, S. Sun and B.-Y. Zhang, The Korteweg-de Vries equation on a finite domain II,, J. Diff. Eqns, 247 (2009), 2558.  doi: 10.1016/j.jde.2009.07.010.  Google Scholar

[6]

B. A. Bubnov, Generalized boundary value problems for the Korteweg-de Vries equation in bounded domain,, Differential Equations, 15 (1979), 17.   Google Scholar

[7]

B. A. Bubnov, Solvability in the large of nonlinear boundary-value problem for the Korteweg-de Vries equations,, Differential Equations, 16 (1980), 24.   Google Scholar

[8]

J. Colliander and C. Kenig, The generalized Korteweg-de Vries equation on the half line,, Comm. Partial Differential Equations, 27 (2002), 2187.  doi: 10.1081/PDE-120016157.  Google Scholar

[9]

T. Colin and J.-M. Ghidaglia, An initial-boundary-value problem for the Korteweg-de Vries Equation posed on a finite interval,, Adv. Differential Equations, 6 (2001), 1463.   Google Scholar

[10]

P. Constantin, C. Foias, B. Nicolaenko and R. Temam, "Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations,", Applied Mathematical Sciences, 70 (1989).   Google Scholar

[11]

W. Craig and C. E. Wayne, Newton's method and periodic solutions of nonlinear wave equations,, Comm. Pure Appl. Math., 46 (1993), 1409.  doi: 10.1002/cpa.3160461102.  Google Scholar

[12]

A. V. Faminskii, The Cauchy problem and the mixed problem in the half strip for equation of Korteweg-de Vries type,, (Russian) Dinamika Sploshn. Sredy, 162 (1983), 152.   Google Scholar

[13]

A. V. Faminskii, A mixed problem in a semistrip for the Korteweg-de Vries equation and its generalizations,, (Russian), 258 (1988), 54.   Google Scholar

[14]

A. V. Faminskii, Mixed problms for the Korteweg-de Vries equation,, Sbornik: Mathematics, 190 (1999), 903.  doi: 10.1070/SM1999v190n06ABEH000408.  Google Scholar

[15]

A. V. Faminskii, On an initial boundary value problem in a bounded domain for the generalized Korteweg-de Vries equation,, International Conference on Differential and Functional Differential Equations, 8 (2001), 183.   Google Scholar

[16]

A. V. Faminskii, An initial boundary-value problem in a half-strip for the Korteweg-de Vries equation in fractional order Sobelev Spaces,, Comm. Partial Differential Eq., 29 (2004), 1653.  doi: 10.1081/PDE-200040191.  Google Scholar

[17]

A. V. Faminskii, Global well-posedness of two initial-boundary-value problems for the Korteweg-de Vries equation,, Differential Integral Equations, 20 (2007), 601.   Google Scholar

[18]

J.-M. Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite-dimensional dynamical system in the long time,, J. Differential Eqns., 74 (1988), 369.  doi: 10.1016/0022-0396(88)90010-1.  Google Scholar

[19]

J.-M. Ghidaglia, A note on the strong convergence towards attractors of damped forced KdV equations,, J. Differential Eqns., 110 (1994), 356.  doi: 10.1006/jdeq.1994.1071.  Google Scholar

[20]

J. Holmer, The initial-boundary value problem for the Korteweg-de Vries equation,, Comm. Partial Differential Equations, 31 (2006), 1151.  doi: 10.1080/03605300600718503.  Google Scholar

[21]

T. Kato, "Perturbation Theory for Linear Operators,", Dir Grundlehren der mathematischen Wissenschaften, 132 (1966).   Google Scholar

[22]

J. B. Keller and L. Ting, Periodic vibrations of systems governed by nonlinear partial differential equations,, Comm. Pure and Appl. Math., 19 (1966), 371.  doi: 10.1002/cpa.3160190404.  Google Scholar

[23]

J. U. Kim, Forced vibration of an aero-elastic plate,, J. Math. Anal. Appl., 113 (1986), 454.  doi: 10.1016/0022-247X(86)90317-3.  Google Scholar

[24]

G. Kramer and B.-Y. Zhang, Nonhomogeneous boundary value problems of the KdV equation on a bounded domain,, Journal Syst. Sci. & Complexity, 23 (2010), 499.  doi: 10.1007/s11424-010-0143-x.  Google Scholar

[25]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, 44 (1983).   Google Scholar

[26]

I. Rivas, G. Kramer and B.-Y. Zhang, Well-posedness of a class of initial-boundary-value problem for the Kortweg-de Vries equation on a bounded domain,, preprint, ().   Google Scholar

[27]

P. H. Rabinowitz, Periodic solutions of nonlinear hyperbolic differential equations,, Comm. Pure Appl. Math., 20 (1967), 145.  doi: 10.1002/cpa.3160200105.  Google Scholar

[28]

P. H. Rabinowitz, Free vibrations for a semi-linear wave equation,, Comm. Pure Appl. Math., 31 (1978), 31.  doi: 10.1002/cpa.3160310103.  Google Scholar

[29]

G. R. Sell and Y. C. You, Inertial manifolds: the nonselfadjoint case,, J. Diff. Eqns., 96 (1992), 203.  doi: 10.1016/0022-0396(92)90152-D.  Google Scholar

[30]

L. Tartar, Interpolation non linéaire et régularité,, J. Funct. Anal, 9 (1972), 469.  doi: 10.1016/0022-1236(72)90022-5.  Google Scholar

[31]

O. Vejvoda, "Partial Differential Equations: Time-Periodic Solutions,", Mrtinus Nijhoff Publishers, (1981).   Google Scholar

[32]

C. E. Wayne, Periodic solutions of nonlinear partial differential equations,, Notices Amer. Math. Soc., 44 (1997), 895.   Google Scholar

[33]

M. Usman and B.-Y. Zhang, Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability,, J. Systems Sciences and Complexity, 20 (2007), 15.  doi: 10.1007/s11424-007-9025-2.  Google Scholar

[34]

M. Usman and B.-Y. Zhang, Forced oscillations of a class of nonlinear dispersive wave equations and their stability,, Discrete and Continuous Dynamical Systems, 26 (2010), 1509.   Google Scholar

[35]

Y. Yang and B.-Y. Zhang, Forced oscillations of a damped Benjamin-Bona-Mahony equation in a quarter plane,, in, 242 (2005).   Google Scholar

[36]

B.-Y. Zhang, Forced oscillations of a regularized long-wave equation and their global stability,, in, (1999), 456.   Google Scholar

[37]

B.-Y. Zhang, Forced oscillation of the Korteweg-de Vries-Burgers equation and its stability,, in, 218 (1999), 337.   Google Scholar

[1]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[2]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2020393

[3]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[4]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021006

[5]

Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021001

[6]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[7]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[8]

Charlotte Rodriguez. Networks of geometrically exact beams: Well-posedness and stabilization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021002

[9]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[10]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[11]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[12]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[13]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[14]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[15]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[16]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[17]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[18]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[19]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[20]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]