Citation: |
[1] |
J. L. Bona, S. Sun and B.-Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane, Trans. American Math. Soc., 354 (2001), 427-490.doi: 10.1090/S0002-9947-01-02885-9. |
[2] |
J. L. Bona, S. M. Sun and B.-Y. Zhang, Forced oscillations of a damped Korteweg-de Vries equation in a quarter plane, Comm. Contemp. Math, 5 (2003), 369-400.doi: 10.1142/S021919970300104X. |
[3] |
J. L. Bona, S. Sun and B.-Y. Zhang, A nonhomogeneous boundary value problem for the KdV equation posed on a finite domain, Commun. Partial Differential Eq., 28 (2003), 1391-1436.doi: 10.1081/PDE-120024373. |
[4] |
J. L. Bona, S. Sun and B.-Y. Zhang, Non-homogeneous boundary value problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane, Annales de l'Institut Henri Poincaré - Analyse non linéaire, 25 (2008), 1145-1185. |
[5] |
J. L. Bona, S. Sun and B.-Y. Zhang, The Korteweg-de Vries equation on a finite domain II, J. Diff. Eqns, 247 (2009), 2558-2596.doi: 10.1016/j.jde.2009.07.010. |
[6] |
B. A. Bubnov, Generalized boundary value problems for the Korteweg-de Vries equation in bounded domain, Differential Equations, 15 (1979), 17-21. |
[7] |
B. A. Bubnov, Solvability in the large of nonlinear boundary-value problem for the Korteweg-de Vries equations, Differential Equations, 16 (1980), 24-30. |
[8] |
J. Colliander and C. Kenig, The generalized Korteweg-de Vries equation on the half line, Comm. Partial Differential Equations, 27 (2002), 2187-2266.doi: 10.1081/PDE-120016157. |
[9] |
T. Colin and J.-M. Ghidaglia, An initial-boundary-value problem for the Korteweg-de Vries Equation posed on a finite interval, Adv. Differential Equations, 6 (2001), 1463-1492. |
[10] |
P. Constantin, C. Foias, B. Nicolaenko and R. Temam, "Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations," Applied Mathematical Sciences, 70, Springer-Verlag, New York-Berlin, 1989. |
[11] |
W. Craig and C. E. Wayne, Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), 1409-1498.doi: 10.1002/cpa.3160461102. |
[12] |
A. V. Faminskii, The Cauchy problem and the mixed problem in the half strip for equation of Korteweg-de Vries type, (Russian) Dinamika Sploshn. Sredy, 162 (1983), 152-158. |
[13] |
A. V. Faminskii, A mixed problem in a semistrip for the Korteweg-de Vries equation and its generalizations, (Russian), Dinamika Sploshn. Sredy, 258 (1988), 54-94; (English transl. in Trans. Moscow Math. Soc., 51 (1989), 53-91). |
[14] |
A. V. Faminskii, Mixed problms for the Korteweg-de Vries equation, Sbornik: Mathematics, 190 (1999), 903-935.doi: 10.1070/SM1999v190n06ABEH000408. |
[15] |
A. V. Faminskii, On an initial boundary value problem in a bounded domain for the generalized Korteweg-de Vries equation, International Conference on Differential and Functional Differential Equations, (Moscow, 1999), Funct. Differ. Equ., 8 (2001), 183-194. |
[16] |
A. V. Faminskii, An initial boundary-value problem in a half-strip for the Korteweg-de Vries equation in fractional order Sobelev Spaces, Comm. Partial Differential Eq., 29 (2004), 1653-1695.doi: 10.1081/PDE-200040191. |
[17] |
A. V. Faminskii, Global well-posedness of two initial-boundary-value problems for the Korteweg-de Vries equation, Differential Integral Equations, 20 (2007), 601-642. |
[18] |
J.-M. Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite-dimensional dynamical system in the long time, J. Differential Eqns., 74 (1988), 369-390.doi: 10.1016/0022-0396(88)90010-1. |
[19] |
J.-M. Ghidaglia, A note on the strong convergence towards attractors of damped forced KdV equations, J. Differential Eqns., 110 (1994), 356-359.doi: 10.1006/jdeq.1994.1071. |
[20] |
J. Holmer, The initial-boundary value problem for the Korteweg-de Vries equation, Comm. Partial Differential Equations, 31 (2006), 1151-1190.doi: 10.1080/03605300600718503. |
[21] |
T. Kato, "Perturbation Theory for Linear Operators," Dir Grundlehren der mathematischen Wissenschaften, 132, Springer, New York, 1966. |
[22] |
J. B. Keller and L. Ting, Periodic vibrations of systems governed by nonlinear partial differential equations, Comm. Pure and Appl. Math., 19 (1966), 371-420.doi: 10.1002/cpa.3160190404. |
[23] |
J. U. Kim, Forced vibration of an aero-elastic plate, J. Math. Anal. Appl., 113 (1986), 454-467.doi: 10.1016/0022-247X(86)90317-3. |
[24] |
G. Kramer and B.-Y. Zhang, Nonhomogeneous boundary value problems of the KdV equation on a bounded domain, Journal Syst. Sci. & Complexity, 23 (2010), 499-526.doi: 10.1007/s11424-010-0143-x. |
[25] |
A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. |
[26] |
I. Rivas, G. Kramer and B.-Y. Zhang, Well-posedness of a class of initial-boundary-value problem for the Kortweg-de Vries equation on a bounded domain, preprint, arXiv:math/1012.1057. |
[27] |
P. H. Rabinowitz, Periodic solutions of nonlinear hyperbolic differential equations, Comm. Pure Appl. Math., 20 (1967), 145-205.doi: 10.1002/cpa.3160200105. |
[28] |
P. H. Rabinowitz, Free vibrations for a semi-linear wave equation, Comm. Pure Appl. Math., 31 (1978), 31-68.doi: 10.1002/cpa.3160310103. |
[29] |
G. R. Sell and Y. C. You, Inertial manifolds: the nonselfadjoint case, J. Diff. Eqns., 96 (1992), 203-255.doi: 10.1016/0022-0396(92)90152-D. |
[30] |
L. Tartar, Interpolation non linéaire et régularité, J. Funct. Anal, 9 (1972), 469-489.doi: 10.1016/0022-1236(72)90022-5. |
[31] |
O. Vejvoda, "Partial Differential Equations: Time-Periodic Solutions," Mrtinus Nijhoff Publishers, 1981. |
[32] |
C. E. Wayne, Periodic solutions of nonlinear partial differential equations, Notices Amer. Math. Soc., 44 (1997), 895-902. |
[33] |
M. Usman and B.-Y. Zhang, Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability, J. Systems Sciences and Complexity, 20 (2007), 15-24.doi: 10.1007/s11424-007-9025-2. |
[34] |
M. Usman and B.-Y. Zhang, Forced oscillations of a class of nonlinear dispersive wave equations and their stability, Discrete and Continuous Dynamical Systems, 26 (2010), 1509-1523. |
[35] |
Y. Yang and B.-Y. Zhang, Forced oscillations of a damped Benjamin-Bona-Mahony equation in a quarter plane, "Control Theory of Partial Differential Equations," Lect. Notes Pure Appl. Math., 242, Chapman & Hall/CRC, Boca Raton, FL, 2005, 375-386. |
[36] |
B.-Y. Zhang, Forced oscillations of a regularized long-wave equation and their global stability, in "Differential Equations and Computational Simulations" (Chengdu, 1999), World Sci. Publishing, River Edge, NJ, 2000, 456-463. |
[37] |
B.-Y. Zhang, Forced oscillation of the Korteweg-de Vries-Burgers equation and its stability, in "Control of Nonlinear Distributed Parameter Systems" (College Station, TX, 1999), Lecture Notes in Pure and Appl. Math., 218, Dekker, New York, 2001, 337-357. |