Citation: |
[1] |
K. Ammari, Z. Liu and M. Tucsnak, Decay rates for a beam with pointwise force and moment feedback, Math. Control Signals Systems, 15 (2002), 229-255.doi: 10.1007/s004980200009. |
[2] |
D. E. Carlson, Linear thermoelasticity, in "Handbuch der Physik," Springer-Verlag, Berlin, (1972), 297-346. |
[3] |
C. Cattaneo, A form of heat conduction equation which eliminates the paradox of instantaneous propagation, Comput. Rendus, 247 (1958), 431-433. |
[4] |
R. Dáger and E. Zuazua, "Wave Propagation, Observation and Control in 1-D Flexible Multi-Structures," Mathématiques & Applications, 50, Springer-Verlag, Berlin, 2006. |
[5] |
J. E. Muñoz Rivera, F. Ammar Khodja, A. Benabdallah and R. Racke, Energy decay for Timoshenko system of memory type, J. Differential Equations, 194 (2003), 82-115.doi: 10.1016/S0022-0396(03)00185-2. |
[6] |
L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc., 236 (1978), 385-394.doi: 10.1090/S0002-9947-1978-0461206-1. |
[7] |
Y. N. Guo and G. Q. Xu, Stability and Riesz basis property for general network of strings, J. Dynamical and Control Systems, 15 (2009), 223-245.doi: 10.1007/s10883-009-9064-1. |
[8] |
S. Jiang and R. Racke, "Evolution Equation in Thermoelasticity," Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 112, Chapman & Hall/CRC, Boca Raton, FL, 2000. |
[9] |
J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modelling of dynamic networks of thin thermoelastic beams, Mathematical Methods in the Applied Sciences, 16 (1993), 327-358.doi: 10.1002/mma.1670160503. |
[10] |
G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity, Arch. Rat. Mech. Anal., 141 (1998), 297-329.doi: 10.1007/s002050050078. |
[11] |
G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity, Archives Rat. Mech. Anal., 148 (1999), 179-231.doi: 10.1007/s002050050160. |
[12] |
Z. Liu and S. Zheng, "Semigroups Associated with Dissipative Systems," Chapman & Hall/CRC Research Notes in Mathematics, 398, Chapman & Hall/CRC, Boca Raton, FL, 1999. |
[13] |
A. Marzocchi, J. E. Muñoz Rivera and M. G. Naso, Asymptotic behaviour and exponential stability for a transmission problem in thermoelasticity, Math. Meth. Appl. Sci., 25 (2002), 955-980.doi: 10.1002/mma.323. |
[14] |
A. Pazy, "Semigroup of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, 1983. |
[15] |
J. Prüss, On the spectrum of $C_0$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.doi: 10.1090/S0002-9947-1984-0743749-9. |
[16] |
R. Racke, Thermoelasticity with second sound-exponential stability in linear and non-linear 1-d, Math. Meth. Appl. Sci., 25 (2002), 409-441.doi: 10.1002/mma.298. |
[17] |
R. Racke, J. E. M. Rivera and H. F. Sare, Stability for a transmission problem in thermoelasticity with second sound, Journal of Thermal Stresses, 31 (2008), 1170-1189.doi: 10.1080/01495730802508004. |
[18] |
Y. Saad, "Iterative Methods for Sparse Linear Systems," Second edition, SIAM, Philadelphia, PA, 2003. |
[19] |
Hugo D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Rational Mech. Anal., 194 (2009), 221-251.doi: 10.1007/s00205-009-0220-2. |
[20] |
J. von Below, A characteristic equation associated to an eigenvalue problem on $c^2$-networks, Lin. Algebra Appl., 71 (1985), 309-325.doi: 10.1016/0024-3795(85)90258-7. |