\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Exponential stability of a general network of 1-d thermoelastic rods

Abstract Related Papers Cited by
  • We consider a finite planar network of 1-$d$ thermoelastic rods using Fourier's law or Cattaneo's law for heat conduction, we show that the system is exponentially stable in the two cases.
    Mathematics Subject Classification: 35B40, 35M10, 93D20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. Ammari, Z. Liu and M. Tucsnak, Decay rates for a beam with pointwise force and moment feedback, Math. Control Signals Systems, 15 (2002), 229-255.doi: 10.1007/s004980200009.

    [2]

    D. E. Carlson, Linear thermoelasticity, in "Handbuch der Physik," Springer-Verlag, Berlin, (1972), 297-346.

    [3]

    C. Cattaneo, A form of heat conduction equation which eliminates the paradox of instantaneous propagation, Comput. Rendus, 247 (1958), 431-433.

    [4]

    R. Dáger and E. Zuazua, "Wave Propagation, Observation and Control in 1-D Flexible Multi-Structures," Mathématiques & Applications, 50, Springer-Verlag, Berlin, 2006.

    [5]

    J. E. Muñoz Rivera, F. Ammar Khodja, A. Benabdallah and R. Racke, Energy decay for Timoshenko system of memory type, J. Differential Equations, 194 (2003), 82-115.doi: 10.1016/S0022-0396(03)00185-2.

    [6]

    L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc., 236 (1978), 385-394.doi: 10.1090/S0002-9947-1978-0461206-1.

    [7]

    Y. N. Guo and G. Q. Xu, Stability and Riesz basis property for general network of strings, J. Dynamical and Control Systems, 15 (2009), 223-245.doi: 10.1007/s10883-009-9064-1.

    [8]

    S. Jiang and R. Racke, "Evolution Equation in Thermoelasticity," Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 112, Chapman & Hall/CRC, Boca Raton, FL, 2000.

    [9]

    J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modelling of dynamic networks of thin thermoelastic beams, Mathematical Methods in the Applied Sciences, 16 (1993), 327-358.doi: 10.1002/mma.1670160503.

    [10]

    G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity, Arch. Rat. Mech. Anal., 141 (1998), 297-329.doi: 10.1007/s002050050078.

    [11]

    G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity, Archives Rat. Mech. Anal., 148 (1999), 179-231.doi: 10.1007/s002050050160.

    [12]

    Z. Liu and S. Zheng, "Semigroups Associated with Dissipative Systems," Chapman & Hall/CRC Research Notes in Mathematics, 398, Chapman & Hall/CRC, Boca Raton, FL, 1999.

    [13]

    A. Marzocchi, J. E. Muñoz Rivera and M. G. Naso, Asymptotic behaviour and exponential stability for a transmission problem in thermoelasticity, Math. Meth. Appl. Sci., 25 (2002), 955-980.doi: 10.1002/mma.323.

    [14]

    A. Pazy, "Semigroup of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, 1983.

    [15]

    J. Prüss, On the spectrum of $C_0$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.doi: 10.1090/S0002-9947-1984-0743749-9.

    [16]

    R. Racke, Thermoelasticity with second sound-exponential stability in linear and non-linear 1-d, Math. Meth. Appl. Sci., 25 (2002), 409-441.doi: 10.1002/mma.298.

    [17]

    R. Racke, J. E. M. Rivera and H. F. Sare, Stability for a transmission problem in thermoelasticity with second sound, Journal of Thermal Stresses, 31 (2008), 1170-1189.doi: 10.1080/01495730802508004.

    [18]

    Y. Saad, "Iterative Methods for Sparse Linear Systems," Second edition, SIAM, Philadelphia, PA, 2003.

    [19]

    Hugo D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Rational Mech. Anal., 194 (2009), 221-251.doi: 10.1007/s00205-009-0220-2.

    [20]

    J. von Below, A characteristic equation associated to an eigenvalue problem on $c^2$-networks, Lin. Algebra Appl., 71 (1985), 309-325.doi: 10.1016/0024-3795(85)90258-7.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(117) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return