June  2012, 2(2): 101-120. doi: 10.3934/mcrf.2012.2.101

Numerical approximation of an optimization problem to reduce leakage in water distribution systems

1. 

Institut de Mathématiques de Bordeaux IMB UMR 5251, Institut Polytechnique de Bordeaux, Université de Bordeaux, F-33405 Talence, France, France

2. 

Irstea, UR REBX, F-33612 Cestas Cedex, France, France

Received  April 2011 Revised  January 2012 Published  May 2012

Leakage represents a large part of the supplied water in Water Distribution Systems (WDS). Consequently, it is important to develop some efficient strategies to manage such a phenomenon. In this paper an improved formulation of the hydraulic network equations that incorporate pressure-dependent leakage, is presented and validated. The formulation is derived from the Navier-Stokes equations and solved using an adequate splitting method. Then, this formulation is used to study a constrained optimization problem with the objective to minimize the distributed water volume reducing the leakage. The problem is described and validated for academic case studies and real networks.
Citation: Pierre Fabrie, Elodie Jaumouillé, Iraj Mortazavi, Olivier Piller. Numerical approximation of an optimization problem to reduce leakage in water distribution systems. Mathematical Control & Related Fields, 2012, 2 (2) : 101-120. doi: 10.3934/mcrf.2012.2.101
References:
[1]

O. Chesneau, "Un Outil d'aide à la Maîtrise des Pertes dans les Réseaux d'eau Potable: La Modélisation Dynamique de Différentes Composantes du Débit de Fuite,", Ph.D thesis, (2006).   Google Scholar

[2]

E. Jaumouillé, O. Piller and J. E. Van Zyl, A hydraulic model for water distribution systems incorporating both inertia and leakage,, in, (): 129.   Google Scholar

[3]

Porteau software, IRSTEA (2011), accessed on March 09, 2012., Available from: \url{http://porteau.irstea.fr/}., ().   Google Scholar

[4]

A. Lambert, What do we know about pressure-leakage relationships in distribution systems?,, in, (2001), 89.   Google Scholar

[5]

J. E. Van Zyl and C. R. I. Clayton, The effect of pressure on leakage in water distribution systems,, in, 2 (2005), 131.   Google Scholar

[6]

R. Glowinski and A. Marrocco, Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation dualité, d'une classe de problèmes de Dirichlet non linéaires,, Rev. Française Automat. Informat. Recherche Opérationnelle RAIRO Analyse Numérique, 9 (1975), 41.   Google Scholar

[7]

M. S. Ghidaoui, On the fundamental equations of water hammer,, Urban Water Journal, 1 (): 71.   Google Scholar

[8]

J. T. Beale and A. Majda, Rates of convergence for viscous splitting of the Navier-Stokes equations,, Mathematics of Computation, 37 (1981), 243.  doi: 10.1090/S0025-5718-1981-0628693-0.  Google Scholar

[9]

S. Descombes and M. Massot, Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: Singular perturbation and order reduction,, Numerische Mathematik, 97 (2004), 667.  doi: 10.1007/s00211-003-0496-3.  Google Scholar

[10]

E. Trélat, "Contrôle Optimal. Théorie & Applications,", Mathématiques Concrètes, (2005).   Google Scholar

[11]

M. Bergounioux, "Optimisation et Contrôle des Systemes Linéaires,", Dunod, (2001).   Google Scholar

[12]

B. Brémond, P. Fabrie, E. Jaumouillé, I. Mortazavi and O. Piller, Numerical simulation of a hydraulic Saint-Venant type model with pressure-dependent leakage,, Applied Mathematics Letters, 22 (2009), 1694.  doi: 10.1016/j.aml.2009.02.007.  Google Scholar

[13]

P. Fabrie, G. Gancel, I. Mortazavi and O. Piller, Quality modelling of water distribution systems using sensitivity equations,, Journal of Hydraulic Engineering, 136 (2010).  doi: 10.1061/(ASCE)HY.1943-7900.0000138.  Google Scholar

[14]

W. Hundsdorfer and J. G. Verwer, "Numerical Solution of Time Dependent Advection-Diffusion-Reaction Equations,", Springer Series in Computational Mathematics, 33 (2003).   Google Scholar

show all references

References:
[1]

O. Chesneau, "Un Outil d'aide à la Maîtrise des Pertes dans les Réseaux d'eau Potable: La Modélisation Dynamique de Différentes Composantes du Débit de Fuite,", Ph.D thesis, (2006).   Google Scholar

[2]

E. Jaumouillé, O. Piller and J. E. Van Zyl, A hydraulic model for water distribution systems incorporating both inertia and leakage,, in, (): 129.   Google Scholar

[3]

Porteau software, IRSTEA (2011), accessed on March 09, 2012., Available from: \url{http://porteau.irstea.fr/}., ().   Google Scholar

[4]

A. Lambert, What do we know about pressure-leakage relationships in distribution systems?,, in, (2001), 89.   Google Scholar

[5]

J. E. Van Zyl and C. R. I. Clayton, The effect of pressure on leakage in water distribution systems,, in, 2 (2005), 131.   Google Scholar

[6]

R. Glowinski and A. Marrocco, Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation dualité, d'une classe de problèmes de Dirichlet non linéaires,, Rev. Française Automat. Informat. Recherche Opérationnelle RAIRO Analyse Numérique, 9 (1975), 41.   Google Scholar

[7]

M. S. Ghidaoui, On the fundamental equations of water hammer,, Urban Water Journal, 1 (): 71.   Google Scholar

[8]

J. T. Beale and A. Majda, Rates of convergence for viscous splitting of the Navier-Stokes equations,, Mathematics of Computation, 37 (1981), 243.  doi: 10.1090/S0025-5718-1981-0628693-0.  Google Scholar

[9]

S. Descombes and M. Massot, Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: Singular perturbation and order reduction,, Numerische Mathematik, 97 (2004), 667.  doi: 10.1007/s00211-003-0496-3.  Google Scholar

[10]

E. Trélat, "Contrôle Optimal. Théorie & Applications,", Mathématiques Concrètes, (2005).   Google Scholar

[11]

M. Bergounioux, "Optimisation et Contrôle des Systemes Linéaires,", Dunod, (2001).   Google Scholar

[12]

B. Brémond, P. Fabrie, E. Jaumouillé, I. Mortazavi and O. Piller, Numerical simulation of a hydraulic Saint-Venant type model with pressure-dependent leakage,, Applied Mathematics Letters, 22 (2009), 1694.  doi: 10.1016/j.aml.2009.02.007.  Google Scholar

[13]

P. Fabrie, G. Gancel, I. Mortazavi and O. Piller, Quality modelling of water distribution systems using sensitivity equations,, Journal of Hydraulic Engineering, 136 (2010).  doi: 10.1061/(ASCE)HY.1943-7900.0000138.  Google Scholar

[14]

W. Hundsdorfer and J. G. Verwer, "Numerical Solution of Time Dependent Advection-Diffusion-Reaction Equations,", Springer Series in Computational Mathematics, 33 (2003).   Google Scholar

[1]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[2]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[3]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[4]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[5]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[6]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[7]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[8]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[9]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[10]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[11]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[12]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[13]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[14]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[15]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[16]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[17]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[18]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[19]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[20]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

[Back to Top]