June  2012, 2(2): 101-120. doi: 10.3934/mcrf.2012.2.101

Numerical approximation of an optimization problem to reduce leakage in water distribution systems

1. 

Institut de Mathématiques de Bordeaux IMB UMR 5251, Institut Polytechnique de Bordeaux, Université de Bordeaux, F-33405 Talence, France, France

2. 

Irstea, UR REBX, F-33612 Cestas Cedex, France, France

Received  April 2011 Revised  January 2012 Published  May 2012

Leakage represents a large part of the supplied water in Water Distribution Systems (WDS). Consequently, it is important to develop some efficient strategies to manage such a phenomenon. In this paper an improved formulation of the hydraulic network equations that incorporate pressure-dependent leakage, is presented and validated. The formulation is derived from the Navier-Stokes equations and solved using an adequate splitting method. Then, this formulation is used to study a constrained optimization problem with the objective to minimize the distributed water volume reducing the leakage. The problem is described and validated for academic case studies and real networks.
Citation: Pierre Fabrie, Elodie Jaumouillé, Iraj Mortazavi, Olivier Piller. Numerical approximation of an optimization problem to reduce leakage in water distribution systems. Mathematical Control & Related Fields, 2012, 2 (2) : 101-120. doi: 10.3934/mcrf.2012.2.101
References:
[1]

O. Chesneau, "Un Outil d'aide à la Maîtrise des Pertes dans les Réseaux d'eau Potable: La Modélisation Dynamique de Différentes Composantes du Débit de Fuite,", Ph.D thesis, (2006). Google Scholar

[2]

E. Jaumouillé, O. Piller and J. E. Van Zyl, A hydraulic model for water distribution systems incorporating both inertia and leakage,, in, (): 129. Google Scholar

[3]

Porteau software, IRSTEA (2011), accessed on March 09, 2012., Available from: \url{http://porteau.irstea.fr/}., (). Google Scholar

[4]

A. Lambert, What do we know about pressure-leakage relationships in distribution systems?,, in, (2001), 89. Google Scholar

[5]

J. E. Van Zyl and C. R. I. Clayton, The effect of pressure on leakage in water distribution systems,, in, 2 (2005), 131. Google Scholar

[6]

R. Glowinski and A. Marrocco, Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation dualité, d'une classe de problèmes de Dirichlet non linéaires,, Rev. Française Automat. Informat. Recherche Opérationnelle RAIRO Analyse Numérique, 9 (1975), 41. Google Scholar

[7]

M. S. Ghidaoui, On the fundamental equations of water hammer,, Urban Water Journal, 1 (): 71. Google Scholar

[8]

J. T. Beale and A. Majda, Rates of convergence for viscous splitting of the Navier-Stokes equations,, Mathematics of Computation, 37 (1981), 243. doi: 10.1090/S0025-5718-1981-0628693-0. Google Scholar

[9]

S. Descombes and M. Massot, Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: Singular perturbation and order reduction,, Numerische Mathematik, 97 (2004), 667. doi: 10.1007/s00211-003-0496-3. Google Scholar

[10]

E. Trélat, "Contrôle Optimal. Théorie & Applications,", Mathématiques Concrètes, (2005). Google Scholar

[11]

M. Bergounioux, "Optimisation et Contrôle des Systemes Linéaires,", Dunod, (2001). Google Scholar

[12]

B. Brémond, P. Fabrie, E. Jaumouillé, I. Mortazavi and O. Piller, Numerical simulation of a hydraulic Saint-Venant type model with pressure-dependent leakage,, Applied Mathematics Letters, 22 (2009), 1694. doi: 10.1016/j.aml.2009.02.007. Google Scholar

[13]

P. Fabrie, G. Gancel, I. Mortazavi and O. Piller, Quality modelling of water distribution systems using sensitivity equations,, Journal of Hydraulic Engineering, 136 (2010). doi: 10.1061/(ASCE)HY.1943-7900.0000138. Google Scholar

[14]

W. Hundsdorfer and J. G. Verwer, "Numerical Solution of Time Dependent Advection-Diffusion-Reaction Equations,", Springer Series in Computational Mathematics, 33 (2003). Google Scholar

show all references

References:
[1]

O. Chesneau, "Un Outil d'aide à la Maîtrise des Pertes dans les Réseaux d'eau Potable: La Modélisation Dynamique de Différentes Composantes du Débit de Fuite,", Ph.D thesis, (2006). Google Scholar

[2]

E. Jaumouillé, O. Piller and J. E. Van Zyl, A hydraulic model for water distribution systems incorporating both inertia and leakage,, in, (): 129. Google Scholar

[3]

Porteau software, IRSTEA (2011), accessed on March 09, 2012., Available from: \url{http://porteau.irstea.fr/}., (). Google Scholar

[4]

A. Lambert, What do we know about pressure-leakage relationships in distribution systems?,, in, (2001), 89. Google Scholar

[5]

J. E. Van Zyl and C. R. I. Clayton, The effect of pressure on leakage in water distribution systems,, in, 2 (2005), 131. Google Scholar

[6]

R. Glowinski and A. Marrocco, Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation dualité, d'une classe de problèmes de Dirichlet non linéaires,, Rev. Française Automat. Informat. Recherche Opérationnelle RAIRO Analyse Numérique, 9 (1975), 41. Google Scholar

[7]

M. S. Ghidaoui, On the fundamental equations of water hammer,, Urban Water Journal, 1 (): 71. Google Scholar

[8]

J. T. Beale and A. Majda, Rates of convergence for viscous splitting of the Navier-Stokes equations,, Mathematics of Computation, 37 (1981), 243. doi: 10.1090/S0025-5718-1981-0628693-0. Google Scholar

[9]

S. Descombes and M. Massot, Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: Singular perturbation and order reduction,, Numerische Mathematik, 97 (2004), 667. doi: 10.1007/s00211-003-0496-3. Google Scholar

[10]

E. Trélat, "Contrôle Optimal. Théorie & Applications,", Mathématiques Concrètes, (2005). Google Scholar

[11]

M. Bergounioux, "Optimisation et Contrôle des Systemes Linéaires,", Dunod, (2001). Google Scholar

[12]

B. Brémond, P. Fabrie, E. Jaumouillé, I. Mortazavi and O. Piller, Numerical simulation of a hydraulic Saint-Venant type model with pressure-dependent leakage,, Applied Mathematics Letters, 22 (2009), 1694. doi: 10.1016/j.aml.2009.02.007. Google Scholar

[13]

P. Fabrie, G. Gancel, I. Mortazavi and O. Piller, Quality modelling of water distribution systems using sensitivity equations,, Journal of Hydraulic Engineering, 136 (2010). doi: 10.1061/(ASCE)HY.1943-7900.0000138. Google Scholar

[14]

W. Hundsdorfer and J. G. Verwer, "Numerical Solution of Time Dependent Advection-Diffusion-Reaction Equations,", Springer Series in Computational Mathematics, 33 (2003). Google Scholar

[1]

Ruxandra Stavre. Optimization of the blood pressure with the control in coefficients. Evolution Equations & Control Theory, 2020, 9 (1) : 131-151. doi: 10.3934/eect.2020019

[2]

M. Bulíček, Josef Málek, Dalibor Pražák. On the dimension of the attractor for a class of fluids with pressure dependent viscosities. Communications on Pure & Applied Analysis, 2005, 4 (4) : 805-822. doi: 10.3934/cpaa.2005.4.805

[3]

Biao Qu, Naihua Xiu. A relaxed extragradient-like method for a class of constrained optimization problem. Journal of Industrial & Management Optimization, 2007, 3 (4) : 645-654. doi: 10.3934/jimo.2007.3.645

[4]

Wen-ling Zhao, Dao-jin Song. A global error bound via the SQP method for constrained optimization problem. Journal of Industrial & Management Optimization, 2007, 3 (4) : 775-781. doi: 10.3934/jimo.2007.3.775

[5]

Takayuki Kubo, Ranmaru Matsui. On pressure stabilization method for nonstationary Navier-Stokes equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2283-2307. doi: 10.3934/cpaa.2018109

[6]

Derek H. Justice, H. Joel Trussell, Mette S. Olufsen. Analysis of Blood Flow Velocity and Pressure Signals using the Multipulse Method. Mathematical Biosciences & Engineering, 2006, 3 (2) : 419-440. doi: 10.3934/mbe.2006.3.419

[7]

Liejune Shiau, Roland Glowinski. Operator splitting method for friction constrained dynamical systems. Conference Publications, 2005, 2005 (Special) : 806-815. doi: 10.3934/proc.2005.2005.806

[8]

Guohua Zhang. Variational principles of pressure. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1409-1435. doi: 10.3934/dcds.2009.24.1409

[9]

M. Bulíček, P. Kaplický. Incompressible fluids with shear rate and pressure dependent viscosity: Regularity of steady planar flows. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 41-50. doi: 10.3934/dcdss.2008.1.41

[10]

Yi An, Zhuohan Li, Changzhi Wu, Huosheng Hu, Cheng Shao, Bo Li. Earth pressure field modeling for tunnel face stability evaluation of EPB shield machines based on optimization solution. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020101

[11]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485

[12]

Zhongwen Chen, Songqiang Qiu, Yujie Jiao. A penalty-free method for equality constrained optimization. Journal of Industrial & Management Optimization, 2013, 9 (2) : 391-409. doi: 10.3934/jimo.2013.9.391

[13]

Rentsen Enkhbat, Evgeniya A. Finkelstein, Anton S. Anikin, Alexandr Yu. Gornov. Global optimization reduction of generalized Malfatti's problem. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 211-221. doi: 10.3934/naco.2017015

[14]

Peng Zhang, Jiequan Li, Tong Zhang. On two-dimensional Riemann problem for pressure-gradient equations of the Euler system. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 609-634. doi: 10.3934/dcds.1998.4.609

[15]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 545-556. doi: 10.3934/dcds.2011.31.545

[16]

Marc Rauch. Variational principles for the topological pressure of measurable potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 367-394. doi: 10.3934/dcdss.2017018

[17]

Xueting Tian. Topological pressure for the completely irregular set of birkhoff averages. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2745-2763. doi: 10.3934/dcds.2017118

[18]

Vishal Vasan, Katie Oliveras. Pressure beneath a traveling wave with constant vorticity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3219-3239. doi: 10.3934/dcds.2014.34.3219

[19]

Alessandro Bertuzzi, Antonio Fasano, Alberto Gandolfi, Carmela Sinisgalli. Interstitial Pressure And Fluid Motion In Tumor Cords. Mathematical Biosciences & Engineering, 2005, 2 (3) : 445-460. doi: 10.3934/mbe.2005.2.445

[20]

Baojun Song, Melissa Castillo-Garsow, Karen R. Ríos-Soto, Marcin Mejran, Leilani Henso, Carlos Castillo-Chavez. Raves, clubs and ecstasy: the impact of peer pressure. Mathematical Biosciences & Engineering, 2006, 3 (1) : 249-266. doi: 10.3934/mbe.2006.3.249

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

[Back to Top]