\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the control of some coupled systems of the Boussinesq kind with few controls

Abstract Related Papers Cited by
  • This paper is devoted to prove the local exact controllability to the trajectories for a coupled system, of the Boussinesq kind, with a reduced number of controls. In the state system, the unknowns are the velocity field and pressure of the fluid $(\mathbf{y},p)$, the temperature $\theta$ and an additional variable $c$ that can be viewed as the concentration of a contaminant solute. We prove several results, that essentially show that it is sufficient to act locally in space on the equations satisfied by $\theta$ and $c$.
    Mathematics Subject Classification: Primary: 35B37, 93B05; Secondary: 35Q35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, "Optimal Control,'' Translated from Russina by V. M. Volosov, Contemp. Soviet Math., Consultants Bureau, New York, 1987.

    [2]

    J.-M. Coron and S. Guerrero, Null controllability of the $N$-dimensional Stokes system with $N-1$ scalar controls, Journal of Differrential Equations, 246 (2009), 2908-2921.doi: 10.1016/j.jde.2008.10.019.

    [3]

    E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl. (9), 83 (2004), 1501-1542.

    [4]

    E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Some controllability results for the $N$-dimensional Navier-Stokes and Boussinesq systems with $N - 1$ scalar controls, SIAM J. Control Optim., 45 (2006), 146-173.doi: 10.1137/04061965X.

    [5]

    A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolutions Equations,'' Lectures Notes Series, 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.

    [6]

    A. V. Fursikov and O. Yu. Imanuvilov, Exact controllability of the Navier-Stokes and Boussinesq equation, Russian Math. Surveys, 54 (1999), 565-618.doi: 10.1070/RM1999v054n03ABEH000153.

    [7]

    S. Guerrero, Local exact controllability to the trajectories of the Boussinesq system, Annales de l'Institut Henri Poincaré, Analyse Non Linéaire, 23 (2006), 29-61.

    [8]

    O. Yu. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Cal. Var., 6 (2001), 39-72.

    [9]

    O. Yu. Imanuvilov and J.-P. Puel, Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems, C. R. Math. Acad. Sci. Paris, 335 (2002), 33-38.doi: 10.1016/S1631-073X(02)02389-0.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(66) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return