Advanced Search
Article Contents
Article Contents

On the control of some coupled systems of the Boussinesq kind with few controls

Abstract Related Papers Cited by
  • This paper is devoted to prove the local exact controllability to the trajectories for a coupled system, of the Boussinesq kind, with a reduced number of controls. In the state system, the unknowns are the velocity field and pressure of the fluid $(\mathbf{y},p)$, the temperature $\theta$ and an additional variable $c$ that can be viewed as the concentration of a contaminant solute. We prove several results, that essentially show that it is sufficient to act locally in space on the equations satisfied by $\theta$ and $c$.
    Mathematics Subject Classification: Primary: 35B37, 93B05; Secondary: 35Q35.


    \begin{equation} \\ \end{equation}
  • [1]

    V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, "Optimal Control,'' Translated from Russina by V. M. Volosov, Contemp. Soviet Math., Consultants Bureau, New York, 1987.


    J.-M. Coron and S. Guerrero, Null controllability of the $N$-dimensional Stokes system with $N-1$ scalar controls, Journal of Differrential Equations, 246 (2009), 2908-2921.doi: 10.1016/j.jde.2008.10.019.


    E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl. (9), 83 (2004), 1501-1542.


    E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Some controllability results for the $N$-dimensional Navier-Stokes and Boussinesq systems with $N - 1$ scalar controls, SIAM J. Control Optim., 45 (2006), 146-173.doi: 10.1137/04061965X.


    A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolutions Equations,'' Lectures Notes Series, 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.


    A. V. Fursikov and O. Yu. Imanuvilov, Exact controllability of the Navier-Stokes and Boussinesq equation, Russian Math. Surveys, 54 (1999), 565-618.doi: 10.1070/RM1999v054n03ABEH000153.


    S. Guerrero, Local exact controllability to the trajectories of the Boussinesq system, Annales de l'Institut Henri Poincaré, Analyse Non Linéaire, 23 (2006), 29-61.


    O. Yu. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Cal. Var., 6 (2001), 39-72.


    O. Yu. Imanuvilov and J.-P. Puel, Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems, C. R. Math. Acad. Sci. Paris, 335 (2002), 33-38.doi: 10.1016/S1631-073X(02)02389-0.

  • 加载中

Article Metrics

HTML views() PDF downloads(66) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint