June  2012, 2(2): 121-140. doi: 10.3934/mcrf.2012.2.121

On the control of some coupled systems of the Boussinesq kind with few controls

1. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Aptdo. 1160, 41080 Sevilla, Spain

2. 

Dpto. de Matemática, Universidade Federal da Paraba, 58051-900, João Pessoa, Brazil

Received  February 2011 Revised  September 2011 Published  May 2012

This paper is devoted to prove the local exact controllability to the trajectories for a coupled system, of the Boussinesq kind, with a reduced number of controls. In the state system, the unknowns are the velocity field and pressure of the fluid $(\mathbf{y},p)$, the temperature $\theta$ and an additional variable $c$ that can be viewed as the concentration of a contaminant solute. We prove several results, that essentially show that it is sufficient to act locally in space on the equations satisfied by $\theta$ and $c$.
Citation: Enrique Fernández-Cara, Diego A. Souza. On the control of some coupled systems of the Boussinesq kind with few controls. Mathematical Control & Related Fields, 2012, 2 (2) : 121-140. doi: 10.3934/mcrf.2012.2.121
References:
[1]

V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, "Optimal Control,'', Translated from Russina by V. M. Volosov, (1987).   Google Scholar

[2]

J.-M. Coron and S. Guerrero, Null controllability of the $N$-dimensional Stokes system with $N-1$ scalar controls,, Journal of Differrential Equations, 246 (2009), 2908.  doi: 10.1016/j.jde.2008.10.019.  Google Scholar

[3]

E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system,, J. Math. Pures Appl. (9), 83 (2004), 1501.   Google Scholar

[4]

E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Some controllability results for the $N$-dimensional Navier-Stokes and Boussinesq systems with $N - 1$ scalar controls,, SIAM J. Control Optim., 45 (2006), 146.  doi: 10.1137/04061965X.  Google Scholar

[5]

A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolutions Equations,'', Lectures Notes Series, 34 (1996).   Google Scholar

[6]

A. V. Fursikov and O. Yu. Imanuvilov, Exact controllability of the Navier-Stokes and Boussinesq equation,, Russian Math. Surveys, 54 (1999), 565.  doi: 10.1070/RM1999v054n03ABEH000153.  Google Scholar

[7]

S. Guerrero, Local exact controllability to the trajectories of the Boussinesq system,, Annales de l'Institut Henri Poincaré, 23 (2006), 29.   Google Scholar

[8]

O. Yu. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations,, ESAIM Control Optim. Cal. Var., 6 (2001), 39.   Google Scholar

[9]

O. Yu. Imanuvilov and J.-P. Puel, Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems,, C. R. Math. Acad. Sci. Paris, 335 (2002), 33.  doi: 10.1016/S1631-073X(02)02389-0.  Google Scholar

show all references

References:
[1]

V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, "Optimal Control,'', Translated from Russina by V. M. Volosov, (1987).   Google Scholar

[2]

J.-M. Coron and S. Guerrero, Null controllability of the $N$-dimensional Stokes system with $N-1$ scalar controls,, Journal of Differrential Equations, 246 (2009), 2908.  doi: 10.1016/j.jde.2008.10.019.  Google Scholar

[3]

E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system,, J. Math. Pures Appl. (9), 83 (2004), 1501.   Google Scholar

[4]

E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Some controllability results for the $N$-dimensional Navier-Stokes and Boussinesq systems with $N - 1$ scalar controls,, SIAM J. Control Optim., 45 (2006), 146.  doi: 10.1137/04061965X.  Google Scholar

[5]

A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolutions Equations,'', Lectures Notes Series, 34 (1996).   Google Scholar

[6]

A. V. Fursikov and O. Yu. Imanuvilov, Exact controllability of the Navier-Stokes and Boussinesq equation,, Russian Math. Surveys, 54 (1999), 565.  doi: 10.1070/RM1999v054n03ABEH000153.  Google Scholar

[7]

S. Guerrero, Local exact controllability to the trajectories of the Boussinesq system,, Annales de l'Institut Henri Poincaré, 23 (2006), 29.   Google Scholar

[8]

O. Yu. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations,, ESAIM Control Optim. Cal. Var., 6 (2001), 39.   Google Scholar

[9]

O. Yu. Imanuvilov and J.-P. Puel, Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems,, C. R. Math. Acad. Sci. Paris, 335 (2002), 33.  doi: 10.1016/S1631-073X(02)02389-0.  Google Scholar

[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[5]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[6]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[7]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[8]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[9]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[10]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[11]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[12]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[13]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[14]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[15]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[16]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[17]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[18]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[19]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[20]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]