June  2012, 2(2): 141-170. doi: 10.3934/mcrf.2012.2.141

The simplest semilinear parabolic equation of normal type

1. 

Department of Mechanics & Mathematics, Moscow State University, Moscow 119991, Russian Federation

Received  June 2011 Revised  February 2012 Published  May 2012

The notion of semilinear parabolic equation of normal type is introduced. The structure of dynamical flow corresponding to equation of this type with periodic boundary condition is investigated. Stabilization of mentioned equation with arbitrary initial condition by start control supported in prescribed subset is constructed.
Citation: Andrei Fursikov. The simplest semilinear parabolic equation of normal type. Mathematical Control & Related Fields, 2012, 2 (2) : 141-170. doi: 10.3934/mcrf.2012.2.141
References:
[1]

V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, "Optimal Control,", Translated from the Russian by V. M. Volosov, (1987).   Google Scholar

[2]

M. Cannone, Y. Meyer and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes,, in, (1994), 1993.   Google Scholar

[3]

J.-Y. Chemin, I. Gallagher and M. Paicu, Global regularity for some classes of large solutions to the Navier-Stokes equations,, Annals of Mathematics (2), 173 (2011), 983.  doi: 10.4007/annals.2011.173.2.9.  Google Scholar

[4]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I,, Archive for Rational Mechanics and Analysis, 16 (1964), 269.  doi: 10.1007/BF00276188.  Google Scholar

[5]

A. V. Fursikov, Local existence theorems with unbounded set of input data and unboundedness of stable invariant manifolds for 3D Navier-Stokes equations,, Discrete and Continuous Dynamical System Ser. S, 3 (2010), 269.   Google Scholar

[6]

A. V. Fursikov, "Optimal Control of Distributed Systems. Theory and Applications,", Translations of Mathematical Monographs, 187 (2000).   Google Scholar

[7]

A. V. Fursikov, Stabilizability of a quasilinear parabolic equation by means of boundary feedback control,, Sbornik: Mathematics, 192 (2001), 593.  doi: 10.1070/SM2001v192n04ABEH000560.  Google Scholar

[8]

A. V. Fursikov, Stabilizability of two-dimensional Navier-Stokes equations with help of a boundary feedback control,, J. of Math. Fluid Mech., 3 (2001), 259.   Google Scholar

[9]

A. V. Fursikov, Stabilization for the 3D Navier-Stokes system by feedback boundary control,, Discrete and Cont. Dyn. Syst., 10 (2004), 289.  doi: 10.3934/dcds.2004.10.289.  Google Scholar

[10]

A. V. Fursikov, Unique solvability "in large" of the three-dimensional Navier-Stokes system and moment equations for a dense set of data,, in, (1988).   Google Scholar

[11]

M. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations,, Advances in Mathematics, 157 (2001), 22.  doi: 10.1006/aima.2000.1937.  Google Scholar

[12]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,", Second English edition, (1969).   Google Scholar

[13]

J. Leray, Essai sur le mouvement d'un liquide visqueux emplissant l'espace ,, Acta Matematica, 63 (1933), 193.  doi: 10.1007/BF02547354.  Google Scholar

[14]

J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'Hydrodynamique,, Journal de Mathématiques Pures et Appliquées, 12 (1933), 1.   Google Scholar

[15]

F. Weissler, The Navier-Stokes initial value problem in $L^p$,, Archiv for Rational Mechanics and Analysis, 74 (1980), 219.  doi: 10.1007/BF00280539.  Google Scholar

show all references

References:
[1]

V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, "Optimal Control,", Translated from the Russian by V. M. Volosov, (1987).   Google Scholar

[2]

M. Cannone, Y. Meyer and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes,, in, (1994), 1993.   Google Scholar

[3]

J.-Y. Chemin, I. Gallagher and M. Paicu, Global regularity for some classes of large solutions to the Navier-Stokes equations,, Annals of Mathematics (2), 173 (2011), 983.  doi: 10.4007/annals.2011.173.2.9.  Google Scholar

[4]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I,, Archive for Rational Mechanics and Analysis, 16 (1964), 269.  doi: 10.1007/BF00276188.  Google Scholar

[5]

A. V. Fursikov, Local existence theorems with unbounded set of input data and unboundedness of stable invariant manifolds for 3D Navier-Stokes equations,, Discrete and Continuous Dynamical System Ser. S, 3 (2010), 269.   Google Scholar

[6]

A. V. Fursikov, "Optimal Control of Distributed Systems. Theory and Applications,", Translations of Mathematical Monographs, 187 (2000).   Google Scholar

[7]

A. V. Fursikov, Stabilizability of a quasilinear parabolic equation by means of boundary feedback control,, Sbornik: Mathematics, 192 (2001), 593.  doi: 10.1070/SM2001v192n04ABEH000560.  Google Scholar

[8]

A. V. Fursikov, Stabilizability of two-dimensional Navier-Stokes equations with help of a boundary feedback control,, J. of Math. Fluid Mech., 3 (2001), 259.   Google Scholar

[9]

A. V. Fursikov, Stabilization for the 3D Navier-Stokes system by feedback boundary control,, Discrete and Cont. Dyn. Syst., 10 (2004), 289.  doi: 10.3934/dcds.2004.10.289.  Google Scholar

[10]

A. V. Fursikov, Unique solvability "in large" of the three-dimensional Navier-Stokes system and moment equations for a dense set of data,, in, (1988).   Google Scholar

[11]

M. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations,, Advances in Mathematics, 157 (2001), 22.  doi: 10.1006/aima.2000.1937.  Google Scholar

[12]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,", Second English edition, (1969).   Google Scholar

[13]

J. Leray, Essai sur le mouvement d'un liquide visqueux emplissant l'espace ,, Acta Matematica, 63 (1933), 193.  doi: 10.1007/BF02547354.  Google Scholar

[14]

J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'Hydrodynamique,, Journal de Mathématiques Pures et Appliquées, 12 (1933), 1.   Google Scholar

[15]

F. Weissler, The Navier-Stokes initial value problem in $L^p$,, Archiv for Rational Mechanics and Analysis, 74 (1980), 219.  doi: 10.1007/BF00280539.  Google Scholar

[1]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[2]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[3]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[4]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[5]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[6]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[7]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[8]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[9]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[10]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[11]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[12]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[13]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[14]

Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153

[15]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[16]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[17]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[18]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[19]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[20]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]