June  2012, 2(2): 171-182. doi: 10.3934/mcrf.2012.2.171

Approximate controllability of semilinear reaction diffusion equations

1. 

Universidad de los Andes, Facultad de Ciencias, Departamento de Matemática, Mérida 5101, Venezuela

2. 

Universidad Central de Venezuela, Facultad de Ciencias, Departamento de Matemática, Caracas 1051, Venezuela

3. 

Universidad Central de Venezuela, Facultad de Ciencias, Departamento de Matem, Caracas 1051, Venezuela

Received  November 2011 Revised  January 2012 Published  May 2012

In this paper we prove the approximate controllability of the a broad class of semilinear reaction diffusion equation in a Hilbert space, with application to the semilinear $n$D heat equation, the Ornstein-Uhlenbeck equation, amount others.
Citation: Hugo Leiva, Nelson Merentes, José L. Sánchez. Approximate controllability of semilinear reaction diffusion equations. Mathematical Control & Related Fields, 2012, 2 (2) : 171-182. doi: 10.3934/mcrf.2012.2.171
References:
[1]

J. Appell, H. Leiva, N. Merentes and A. Vignoli, Un espectro de compresión no lineal con aplicaciones a la controlabilidad aproximada de sistemas semilineales,, preprint., ().   Google Scholar

[2]

S. Axler, P. Bourdon and W. Ramey, "Harmonic Function Theory,", Graduate Texts in Math., 137 (1992).   Google Scholar

[3]

D. Barcenas, H. Leiva and Z. Sívoli, A broad class of evolution equations are approximately controllable, but never exactly controllable,, IMA J. Math. Control Inform., 22 (2005), 310.  doi: 10.1093/imamci/dni029.  Google Scholar

[4]

D. Barcenas, H. Leiva and W. Urbina, Controllability of the Ornstein-Uhlenbeck equation,, IMA J. Math. Control Inform., 23 (2006), 1.   Google Scholar

[5]

D. Barcenas, H. Leiva, Y. Quintana and W. Urbina, Controllability of Laguerre and Jacobi equations,, International Journal of Control, 80 (2007), 1307.  doi: 10.1080/00207170701294581.  Google Scholar

[6]

R. F. Curtain and A. J. Pritchard, "Infinite Dimensional Linear Systems,", Lecture Notes in Control and Information Sciences, 8 (1978).   Google Scholar

[7]

R. F. Curtain and H. J. Zwart, "An Introduction to Infinite Dimensional Linear Systems Theory,", Text in Applied Mathematics, 21 (1995).   Google Scholar

[8]

C. Fabre, J. P. Puel and E. Zuazua, Approximate controllability of semilinear heat equation,, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 31.  doi: 10.1017/S0308210500030742.  Google Scholar

[9]

J. I. Díaz, J. Henry and A. M. Ramos, On the approximate controllability of some semilinear parabolic boundary-value problems,, Appl. Math. Optim., 37 (1998), 71.  doi: 10.1007/s002459900069.  Google Scholar

[10]

E. Fernandez-Cara, Remark on approximate and null controllability of semilinear parabolic equations,, ESAIM: Proceeding of Controle et Equations aux Derivees Partielles, 4 (1998), 73.   Google Scholar

[11]

E. Fernandez-Cara and E. Zuazua, Controllability for blowing up semilinear parabolic equations,, C. R. Acad. Sci. Paris Sér I Math., 330 (2000), 199.   Google Scholar

[12]

L. Hormander, "Linear Partial Differential Equations,", Springer Verlag, (1969).   Google Scholar

[13]

H. Leiva, N. Merentes and J. L. Sanchez, Interior controllability of the $nD$ semilinear heat equation,, African Diaspora Journal of Mathematics, 12 (2011), 1.   Google Scholar

[14]

H. Leiva and Y. Quintana, Interior controllability of a broad class of reaction diffusion equations,, Mathematical Problems in Engineering, 2009 (7085).  doi: 10.1155/2009/708516.  Google Scholar

[15]

K. Naito, Controllability of semilinear control systems dominated by the linear part,, SIAM J. Control Optim., 25 (1987), 715.  doi: 10.1137/0325040.  Google Scholar

[16]

K. Naito, Approximate controllability for trajectories of semilinear control systems,, J. of Optimization Theory and Appl., 60 (1989), 57.  doi: 10.1007/BF00938799.  Google Scholar

[17]

M. H. Protter, Unique continuation for elliptic equations,, Transaction of the American Mathematical Society, 95 (1960), 81.  doi: 10.1090/S0002-9947-1960-0113030-3.  Google Scholar

[18]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions,, SIAM Rev., 20 (1978), 636.  doi: 10.1137/1020095.  Google Scholar

[19]

L. De Teresa, Approximate controllability of semilinear heat equation in $\mathbbR^N$,, SIAM J. Control Optim., 36 (1998), 2128.  doi: 10.1137/S036012997322042.  Google Scholar

[20]

L. De Teresa and E. Zuazua, Approximate controllability of semilinear heat equation in unbounded domains,, Nonlinear Anal., 8 (1999).   Google Scholar

[21]

Xu Zhang, A remark on null exact controllability of the heat equation,, SIAM J. Control Optim., 40 (2001), 39.  doi: 10.1137/S0363012900371691.  Google Scholar

[22]

E. Zuazua, Controllability of a system of linear thermoelasticity,, J. Math. Pures Appl., 74 (1995), 291.   Google Scholar

[23]

E. Zuazua, Control of partial differential equations and its semi-discrete approximation,, Discrete and Continuous Dynamical Systems, 8 (2002), 469.   Google Scholar

show all references

References:
[1]

J. Appell, H. Leiva, N. Merentes and A. Vignoli, Un espectro de compresión no lineal con aplicaciones a la controlabilidad aproximada de sistemas semilineales,, preprint., ().   Google Scholar

[2]

S. Axler, P. Bourdon and W. Ramey, "Harmonic Function Theory,", Graduate Texts in Math., 137 (1992).   Google Scholar

[3]

D. Barcenas, H. Leiva and Z. Sívoli, A broad class of evolution equations are approximately controllable, but never exactly controllable,, IMA J. Math. Control Inform., 22 (2005), 310.  doi: 10.1093/imamci/dni029.  Google Scholar

[4]

D. Barcenas, H. Leiva and W. Urbina, Controllability of the Ornstein-Uhlenbeck equation,, IMA J. Math. Control Inform., 23 (2006), 1.   Google Scholar

[5]

D. Barcenas, H. Leiva, Y. Quintana and W. Urbina, Controllability of Laguerre and Jacobi equations,, International Journal of Control, 80 (2007), 1307.  doi: 10.1080/00207170701294581.  Google Scholar

[6]

R. F. Curtain and A. J. Pritchard, "Infinite Dimensional Linear Systems,", Lecture Notes in Control and Information Sciences, 8 (1978).   Google Scholar

[7]

R. F. Curtain and H. J. Zwart, "An Introduction to Infinite Dimensional Linear Systems Theory,", Text in Applied Mathematics, 21 (1995).   Google Scholar

[8]

C. Fabre, J. P. Puel and E. Zuazua, Approximate controllability of semilinear heat equation,, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 31.  doi: 10.1017/S0308210500030742.  Google Scholar

[9]

J. I. Díaz, J. Henry and A. M. Ramos, On the approximate controllability of some semilinear parabolic boundary-value problems,, Appl. Math. Optim., 37 (1998), 71.  doi: 10.1007/s002459900069.  Google Scholar

[10]

E. Fernandez-Cara, Remark on approximate and null controllability of semilinear parabolic equations,, ESAIM: Proceeding of Controle et Equations aux Derivees Partielles, 4 (1998), 73.   Google Scholar

[11]

E. Fernandez-Cara and E. Zuazua, Controllability for blowing up semilinear parabolic equations,, C. R. Acad. Sci. Paris Sér I Math., 330 (2000), 199.   Google Scholar

[12]

L. Hormander, "Linear Partial Differential Equations,", Springer Verlag, (1969).   Google Scholar

[13]

H. Leiva, N. Merentes and J. L. Sanchez, Interior controllability of the $nD$ semilinear heat equation,, African Diaspora Journal of Mathematics, 12 (2011), 1.   Google Scholar

[14]

H. Leiva and Y. Quintana, Interior controllability of a broad class of reaction diffusion equations,, Mathematical Problems in Engineering, 2009 (7085).  doi: 10.1155/2009/708516.  Google Scholar

[15]

K. Naito, Controllability of semilinear control systems dominated by the linear part,, SIAM J. Control Optim., 25 (1987), 715.  doi: 10.1137/0325040.  Google Scholar

[16]

K. Naito, Approximate controllability for trajectories of semilinear control systems,, J. of Optimization Theory and Appl., 60 (1989), 57.  doi: 10.1007/BF00938799.  Google Scholar

[17]

M. H. Protter, Unique continuation for elliptic equations,, Transaction of the American Mathematical Society, 95 (1960), 81.  doi: 10.1090/S0002-9947-1960-0113030-3.  Google Scholar

[18]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions,, SIAM Rev., 20 (1978), 636.  doi: 10.1137/1020095.  Google Scholar

[19]

L. De Teresa, Approximate controllability of semilinear heat equation in $\mathbbR^N$,, SIAM J. Control Optim., 36 (1998), 2128.  doi: 10.1137/S036012997322042.  Google Scholar

[20]

L. De Teresa and E. Zuazua, Approximate controllability of semilinear heat equation in unbounded domains,, Nonlinear Anal., 8 (1999).   Google Scholar

[21]

Xu Zhang, A remark on null exact controllability of the heat equation,, SIAM J. Control Optim., 40 (2001), 39.  doi: 10.1137/S0363012900371691.  Google Scholar

[22]

E. Zuazua, Controllability of a system of linear thermoelasticity,, J. Math. Pures Appl., 74 (1995), 291.   Google Scholar

[23]

E. Zuazua, Control of partial differential equations and its semi-discrete approximation,, Discrete and Continuous Dynamical Systems, 8 (2002), 469.   Google Scholar

[1]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[2]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[3]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[4]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[5]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[6]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[7]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[8]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[9]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[10]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[11]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[12]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[13]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[14]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[15]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[16]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[17]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[18]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[19]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[20]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]