-
Previous Article
A unified theory of maximum principle for continuous and discrete time optimal control problems
- MCRF Home
- This Issue
-
Next Article
Approximate controllability of semilinear reaction diffusion equations
Finite element method for constrained optimal control problems governed by nonlinear elliptic PDEs
1. | Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China, China, China |
References:
[1] |
A. K. Aziz, A. B. Stephens and M. Suri, Numerical methods for reaction-diffusion problems with nondifferentiable kinetics,, Numer. Math., 53 (1988), 1.
doi: 10.1007/BF01395875. |
[2] |
R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods,, Acta Numerica, 10 (2001), 1.
doi: 10.1017/S0962492901000010. |
[3] |
B. Bergounioux, K. Ito and K. Kunisch, Primal-dual strategy for constrained optimal control problems,, SIAM J. Control Optim., 37 (1999), 1176.
doi: 10.1137/S0363012997328609. |
[4] |
J. Burke, A. Lewis and M. Overton, A robust gradient sampling algorithm for nonsmooth, nonconvex optimization,, SIAM J. Optim., 15 (2005), 751.
doi: 10.1137/030601296. |
[5] |
L. Chang, W. Gong and N. Yan, Finite element method for a nonsmooth elliptic equation,, Frontiers of Mathematics in China, 5 (2010), 191.
|
[6] |
X. Chen, First order conditions for nonsmooth discretized constrained optimal control problems,, SIAM J. Control Optim., 42 (2004), 2004.
doi: 10.1137/S0363012902414160. |
[7] |
X. Chen, Z. Nashed and L. Qi, Smoothing methods and semismooth methods for nondifferentiable operator equations,, SIAM J. Numer. Anal., 38 (2000), 1200.
doi: 10.1137/S0036142999356719. |
[8] |
F. Clarke, "Optimization and Nonsmooth Analysis,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1983).
|
[9] |
F. S. Falk, Approximation of a class of optimal control problems with order of convergence estimates,, J. Math. Anal. Appl., 44 (1973), 28.
doi: 10.1016/0022-247X(73)90022-X. |
[10] |
M. Hintermüller, A proximal bundle method based on approximate subgradients,, Computational Optimization and Applications, 20 (2001), 245.
doi: 10.1023/A:1011259017643. |
[11] |
M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, "Optimization with PDE Constraints,", Mathematical Modelling: Theory and Applications, 23 (2009).
|
[12] |
F. Kikuchi, Finite element analysis of a nondifferentiable nonlinear problem related to MHD equilibria,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 35 (1988), 77.
|
[13] |
F. Kikuchi, K. Nakazato and T. Ushijima, Finite element approximation of a nonlinear eigenvalue problem related to MHD equilibria,, Japan J. Appl. Math., 1 (1984), 369.
|
[14] |
R. Li and W. B. Liu, AFEPack, Numerical software., Available from: \url{http://dsec.pku.edu.cn/~rli/software_e.php}., (). Google Scholar |
[15] |
J.-L. Lions, "Optimal Control of Systems Governed by Partial Differential Equations,", Translated from the French by S. K. Mitter, (1971).
|
[16] |
W. B. Liu and N. Yan, "Adaptive Finite Element Methods for Optimal Control Governed by PDEs,", Science Press, (2008). Google Scholar |
[17] |
J. Shen, Z.-Q. Xia and L.-P. Pang, A proximal bundle method with inexact data for convex nondifferentiable minimization,, Nonlinear Analysis, 66 (2007), 2016.
doi: 10.1016/j.na.2006.02.039. |
[18] |
D. Tiba, "Lectures on the Optimal Control of Elliptic Equations,", University of Jyvaskyla Press, (1995). Google Scholar |
show all references
References:
[1] |
A. K. Aziz, A. B. Stephens and M. Suri, Numerical methods for reaction-diffusion problems with nondifferentiable kinetics,, Numer. Math., 53 (1988), 1.
doi: 10.1007/BF01395875. |
[2] |
R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods,, Acta Numerica, 10 (2001), 1.
doi: 10.1017/S0962492901000010. |
[3] |
B. Bergounioux, K. Ito and K. Kunisch, Primal-dual strategy for constrained optimal control problems,, SIAM J. Control Optim., 37 (1999), 1176.
doi: 10.1137/S0363012997328609. |
[4] |
J. Burke, A. Lewis and M. Overton, A robust gradient sampling algorithm for nonsmooth, nonconvex optimization,, SIAM J. Optim., 15 (2005), 751.
doi: 10.1137/030601296. |
[5] |
L. Chang, W. Gong and N. Yan, Finite element method for a nonsmooth elliptic equation,, Frontiers of Mathematics in China, 5 (2010), 191.
|
[6] |
X. Chen, First order conditions for nonsmooth discretized constrained optimal control problems,, SIAM J. Control Optim., 42 (2004), 2004.
doi: 10.1137/S0363012902414160. |
[7] |
X. Chen, Z. Nashed and L. Qi, Smoothing methods and semismooth methods for nondifferentiable operator equations,, SIAM J. Numer. Anal., 38 (2000), 1200.
doi: 10.1137/S0036142999356719. |
[8] |
F. Clarke, "Optimization and Nonsmooth Analysis,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1983).
|
[9] |
F. S. Falk, Approximation of a class of optimal control problems with order of convergence estimates,, J. Math. Anal. Appl., 44 (1973), 28.
doi: 10.1016/0022-247X(73)90022-X. |
[10] |
M. Hintermüller, A proximal bundle method based on approximate subgradients,, Computational Optimization and Applications, 20 (2001), 245.
doi: 10.1023/A:1011259017643. |
[11] |
M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, "Optimization with PDE Constraints,", Mathematical Modelling: Theory and Applications, 23 (2009).
|
[12] |
F. Kikuchi, Finite element analysis of a nondifferentiable nonlinear problem related to MHD equilibria,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 35 (1988), 77.
|
[13] |
F. Kikuchi, K. Nakazato and T. Ushijima, Finite element approximation of a nonlinear eigenvalue problem related to MHD equilibria,, Japan J. Appl. Math., 1 (1984), 369.
|
[14] |
R. Li and W. B. Liu, AFEPack, Numerical software., Available from: \url{http://dsec.pku.edu.cn/~rli/software_e.php}., (). Google Scholar |
[15] |
J.-L. Lions, "Optimal Control of Systems Governed by Partial Differential Equations,", Translated from the French by S. K. Mitter, (1971).
|
[16] |
W. B. Liu and N. Yan, "Adaptive Finite Element Methods for Optimal Control Governed by PDEs,", Science Press, (2008). Google Scholar |
[17] |
J. Shen, Z.-Q. Xia and L.-P. Pang, A proximal bundle method with inexact data for convex nondifferentiable minimization,, Nonlinear Analysis, 66 (2007), 2016.
doi: 10.1016/j.na.2006.02.039. |
[18] |
D. Tiba, "Lectures on the Optimal Control of Elliptic Equations,", University of Jyvaskyla Press, (1995). Google Scholar |
[1] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[2] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[3] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[4] |
Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179 |
[5] |
Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127 |
[6] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[7] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[8] |
Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120 |
[9] |
Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 |
[10] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[11] |
Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006 |
[12] |
Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351 |
[13] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[14] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[15] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[16] |
Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168 |
[17] |
Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117 |
[18] |
Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327 |
[19] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[20] |
Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 |
2019 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]