September  2012, 2(3): 217-246. doi: 10.3934/mcrf.2012.2.217

Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods

1. 

Dpto. EDAN, University of Sevilla, Aptdo. 1160, 41080 Sevilla, Spain

2. 

Laboratoire de Mathématiques, Université Blaise Pascal (Clermont-Ferrand), UMR CNRS 6620, Campus des Cézeaux, 63177 Aubière, France

Received  November 2011 Revised  May 2012 Published  August 2012

This paper deals with the numerical computation of distributed null controls for semi-linear 1D heat equations, in the sublinear and slightly superlinear cases. Under sharp growth assumptions, the existence of controls has been obtained in [Fernandez-Cara $\&$ Zuazua, Null and approximate controllability for weakly blowing up semi-linear heat equation, 2000] via a fixed point reformulation; see also [Barbu, Exact controllability of the superlinear heat equation, 2000]. More precisely, Carleman estimates and Kakutani's Theorem together ensure the existence of solutions to fixed points for an equivalent fixed point reformulated problem. A nontrivial difficulty appears when we want to extract from the associated Picard iterates a convergent (sub)sequence. In this paper, we introduce and analyze a least squares reformulation of the problem; we show that this strategy leads to an effective and constructive way to compute fixed points. We also formulate and apply a Newton-Raphson algorithm in this context. Several numerical experiments that make it possible to test and compare these methods are performed.
Citation: Enrique Fernández-Cara, Arnaud Münch. Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods. Mathematical Control & Related Fields, 2012, 2 (3) : 217-246. doi: 10.3934/mcrf.2012.2.217
References:
[1]

V. Barbu, Exact controllability of the superlinear heat equation,, Appl. Math. Optim., 42 (2000), 73.   Google Scholar

[2]

F. Ben Belgacem and S. M. Kaber, On the Dirichlet boundary controllability of the one-dimensional heat equation: Semi-analytical calculations and ill-posedness degree,, Inverse Problems, 27 (2011).  doi: 10.1088/0266-5611/27/5/055012.  Google Scholar

[3]

F. Boyer, F. Hubert and J. Le Rousseau, Uniform controllability properties for space/time-discretized parabolic equations,, Numerische Mathematik, 118 (2011), 601.  doi: 10.1007/s00211-011-0368-1.  Google Scholar

[4]

C. Carthel, R. Glowinski and J.-L. Lions, On exact and approximate boundary controllabilities for the heat equation: A numerical approach,, J. Optimization, 82 (1994), 429.   Google Scholar

[5]

T. Cazenave and A. Haraux, "Introduction aux Problèmes d'Évolution Semi-Linéaires,", Mathématiques & Applications, 1 (1990).   Google Scholar

[6]

I. Charpentier and Y. Maday, Identifications numériques de contrôles distribués pour l'équation des ondes,, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 779.   Google Scholar

[7]

J.-M. Coron, "Control and Nonlinearity,", Mathematical Surveys and Monographs, 136 (2007).   Google Scholar

[8]

J.-M. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations,, SIAM J. Control Optim., 43 (2004), 549.  doi: 10.1137/S036301290342471X.  Google Scholar

[9]

C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation,, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 31.   Google Scholar

[10]

E. Fernández-Cara, Null controllability of the semilinear heat equation,, ESAIM Control Optim. Calc. Var., 2 (1997), 87.  doi: 10.1051/cocv:1997104.  Google Scholar

[11]

E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability,, SIAM J. Control Optim., 45 (2006), 1399.   Google Scholar

[12]

E. Fernández-Cara and A. Münch, Numerical null controllability of the 1D heat equation: Primal algorithms,, preprint, (2010).   Google Scholar

[13]

E. Fernández-Cara and A. Münch, Numerical null controllability of the 1D heat equation: Dual algorithms,, preprint, (2010).   Google Scholar

[14]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations,, Ann. Inst. Henri Poincaré, 17 (2000), 583.   Google Scholar

[15]

X. Fu, J. Yong and X. Zhang, Exact controllability for the multidimensional semilinear hyperbolic equations,, SIAM J. Control Optim., 46 (2007), 1578.  doi: 10.1137/040610222.  Google Scholar

[16]

S. Ervedoza and J. Valein, On the observability of abstract time-discrete linear parabolic equations,, Rev. Mat. Complut., 23 (2010), 163.  doi: 10.1007/s13163-009-0014-y.  Google Scholar

[17]

A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolution Equations,", Lecture Notes Series, 34 (1996).   Google Scholar

[18]

R. Glowinski, J. He and J.-L. Lions, "Exact and Approximate Controllability for Distributed Parameter Systems. A Numerical Approach,", Encyclopedia of Mathematics and its Applications, 117 (2008).   Google Scholar

[19]

F. Hecht, A. Le Hyaric, J. Morice, K. Ohtsuka and O. Pironneau, FreeFem++, Third edition, Version 3.12., Available from: , ().   Google Scholar

[20]

O. Yu. Imanuvilov, Controllability of parabolic equations, (Russian),, Mat. Sb., 186 (1995), 109.   Google Scholar

[21]

S. Labbé and E. Trélat, Uniform controllability of semidiscrete approximations of parabolic control systems,, Systems Control Lett., 55 (2006), 597.   Google Scholar

[22]

A. Lopez and E. Zuazua, Some new results to the null controllability of the 1-d heat equation,, in, (1998), 1997.   Google Scholar

[23]

I. Lasiecka and R. Triggiani, Exact controllability of semilinear abstract systems with applications to waves and plates boundary control,, Appl. Math. Optim., 23 (1991), 109.  doi: 10.1007/BF01442394.  Google Scholar

[24]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur,, Comm. Partial Differential Equations, 20 (1995), 335.  doi: 10.1080/03605309508821097.  Google Scholar

[25]

J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1. Contrôlabilité exacte,, Recherches en Mathématiques Appliquées, 8 (1988).   Google Scholar

[26]

A. Münch and E. Zuazua, Numerical approximation of null controls for the heat equation: Ill-posedness and remedies,, Inverse Problems, 26 (2010).   Google Scholar

[27]

D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations,, Studies in Appl. Math., 52 (1973), 189.   Google Scholar

[28]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions,, SIAM Rev., 20 (1978), 639.  doi: 10.1137/1020095.  Google Scholar

[29]

X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations, "Proceedings of the International Congress of Mathematicians,", Vol. IV, (2010), 3008.   Google Scholar

[30]

E. Zuazua, Exact boundary controllability for the semilinear wave equation,, in, (1991).   Google Scholar

show all references

References:
[1]

V. Barbu, Exact controllability of the superlinear heat equation,, Appl. Math. Optim., 42 (2000), 73.   Google Scholar

[2]

F. Ben Belgacem and S. M. Kaber, On the Dirichlet boundary controllability of the one-dimensional heat equation: Semi-analytical calculations and ill-posedness degree,, Inverse Problems, 27 (2011).  doi: 10.1088/0266-5611/27/5/055012.  Google Scholar

[3]

F. Boyer, F. Hubert and J. Le Rousseau, Uniform controllability properties for space/time-discretized parabolic equations,, Numerische Mathematik, 118 (2011), 601.  doi: 10.1007/s00211-011-0368-1.  Google Scholar

[4]

C. Carthel, R. Glowinski and J.-L. Lions, On exact and approximate boundary controllabilities for the heat equation: A numerical approach,, J. Optimization, 82 (1994), 429.   Google Scholar

[5]

T. Cazenave and A. Haraux, "Introduction aux Problèmes d'Évolution Semi-Linéaires,", Mathématiques & Applications, 1 (1990).   Google Scholar

[6]

I. Charpentier and Y. Maday, Identifications numériques de contrôles distribués pour l'équation des ondes,, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 779.   Google Scholar

[7]

J.-M. Coron, "Control and Nonlinearity,", Mathematical Surveys and Monographs, 136 (2007).   Google Scholar

[8]

J.-M. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations,, SIAM J. Control Optim., 43 (2004), 549.  doi: 10.1137/S036301290342471X.  Google Scholar

[9]

C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation,, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 31.   Google Scholar

[10]

E. Fernández-Cara, Null controllability of the semilinear heat equation,, ESAIM Control Optim. Calc. Var., 2 (1997), 87.  doi: 10.1051/cocv:1997104.  Google Scholar

[11]

E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability,, SIAM J. Control Optim., 45 (2006), 1399.   Google Scholar

[12]

E. Fernández-Cara and A. Münch, Numerical null controllability of the 1D heat equation: Primal algorithms,, preprint, (2010).   Google Scholar

[13]

E. Fernández-Cara and A. Münch, Numerical null controllability of the 1D heat equation: Dual algorithms,, preprint, (2010).   Google Scholar

[14]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations,, Ann. Inst. Henri Poincaré, 17 (2000), 583.   Google Scholar

[15]

X. Fu, J. Yong and X. Zhang, Exact controllability for the multidimensional semilinear hyperbolic equations,, SIAM J. Control Optim., 46 (2007), 1578.  doi: 10.1137/040610222.  Google Scholar

[16]

S. Ervedoza and J. Valein, On the observability of abstract time-discrete linear parabolic equations,, Rev. Mat. Complut., 23 (2010), 163.  doi: 10.1007/s13163-009-0014-y.  Google Scholar

[17]

A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolution Equations,", Lecture Notes Series, 34 (1996).   Google Scholar

[18]

R. Glowinski, J. He and J.-L. Lions, "Exact and Approximate Controllability for Distributed Parameter Systems. A Numerical Approach,", Encyclopedia of Mathematics and its Applications, 117 (2008).   Google Scholar

[19]

F. Hecht, A. Le Hyaric, J. Morice, K. Ohtsuka and O. Pironneau, FreeFem++, Third edition, Version 3.12., Available from: , ().   Google Scholar

[20]

O. Yu. Imanuvilov, Controllability of parabolic equations, (Russian),, Mat. Sb., 186 (1995), 109.   Google Scholar

[21]

S. Labbé and E. Trélat, Uniform controllability of semidiscrete approximations of parabolic control systems,, Systems Control Lett., 55 (2006), 597.   Google Scholar

[22]

A. Lopez and E. Zuazua, Some new results to the null controllability of the 1-d heat equation,, in, (1998), 1997.   Google Scholar

[23]

I. Lasiecka and R. Triggiani, Exact controllability of semilinear abstract systems with applications to waves and plates boundary control,, Appl. Math. Optim., 23 (1991), 109.  doi: 10.1007/BF01442394.  Google Scholar

[24]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur,, Comm. Partial Differential Equations, 20 (1995), 335.  doi: 10.1080/03605309508821097.  Google Scholar

[25]

J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1. Contrôlabilité exacte,, Recherches en Mathématiques Appliquées, 8 (1988).   Google Scholar

[26]

A. Münch and E. Zuazua, Numerical approximation of null controls for the heat equation: Ill-posedness and remedies,, Inverse Problems, 26 (2010).   Google Scholar

[27]

D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations,, Studies in Appl. Math., 52 (1973), 189.   Google Scholar

[28]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions,, SIAM Rev., 20 (1978), 639.  doi: 10.1137/1020095.  Google Scholar

[29]

X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations, "Proceedings of the International Congress of Mathematicians,", Vol. IV, (2010), 3008.   Google Scholar

[30]

E. Zuazua, Exact boundary controllability for the semilinear wave equation,, in, (1991).   Google Scholar

[1]

François James, Nicolas Vauchelet. One-dimensional aggregation equation after blow up: Existence, uniqueness and numerical simulation. Networks & Heterogeneous Media, 2016, 11 (1) : 163-180. doi: 10.3934/nhm.2016.11.163

[2]

Umberto Biccari. Boundary controllability for a one-dimensional heat equation with a singular inverse-square potential. Mathematical Control & Related Fields, 2019, 9 (1) : 191-219. doi: 10.3934/mcrf.2019011

[3]

Yuta Wakasugi. Blow-up of solutions to the one-dimensional semilinear wave equation with damping depending on time and space variables. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3831-3846. doi: 10.3934/dcds.2014.34.3831

[4]

Fausto Cavalli, Giovanni Naldi. A Wasserstein approach to the numerical solution of the one-dimensional Cahn-Hilliard equation. Kinetic & Related Models, 2010, 3 (1) : 123-142. doi: 10.3934/krm.2010.3.123

[5]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

[6]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[7]

Fredi Tröltzsch, Daniel Wachsmuth. On the switching behavior of sparse optimal controls for the one-dimensional heat equation. Mathematical Control & Related Fields, 2018, 8 (1) : 135-153. doi: 10.3934/mcrf.2018006

[8]

Dong-Ho Tsai, Chia-Hsing Nien. On the oscillation behavior of solutions to the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4073-4089. doi: 10.3934/dcds.2019164

[9]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020037

[10]

Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143

[11]

Shi Jin, Min Tang, Houde Han. A uniformly second order numerical method for the one-dimensional discrete-ordinate transport equation and its diffusion limit with interface. Networks & Heterogeneous Media, 2009, 4 (1) : 35-65. doi: 10.3934/nhm.2009.4.35

[12]

Abdelaziz Khoutaibi, Lahcen Maniar. Null controllability for a heat equation with dynamic boundary conditions and drift terms. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020023

[13]

Isabeau Birindelli, Enrico Valdinoci. On the Allen-Cahn equation in the Grushin plane: A monotone entire solution that is not one-dimensional. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 823-838. doi: 10.3934/dcds.2011.29.823

[14]

Abdelaziz Bennour, Farid Ammar Khodja, Djamel Teniou. Exact and approximate controllability of coupled one-dimensional hyperbolic equations. Evolution Equations & Control Theory, 2017, 6 (4) : 487-516. doi: 10.3934/eect.2017025

[15]

Vincent Calvez, Thomas O. Gallouët. Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1175-1208. doi: 10.3934/dcds.2016.36.1175

[16]

Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809

[17]

Eduardo Cerpa. Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 91-102. doi: 10.3934/cpaa.2010.9.91

[18]

Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489

[19]

Jason R. Morris. A Sobolev space approach for global solutions to certain semi-linear heat equations in bounded domains. Conference Publications, 2009, 2009 (Special) : 574-582. doi: 10.3934/proc.2009.2009.574

[20]

Damien Allonsius, Franck Boyer. Boundary null-controllability of semi-discrete coupled parabolic systems in some multi-dimensional geometries. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019037

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]