September  2012, 2(3): 217-246. doi: 10.3934/mcrf.2012.2.217

Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods

1. 

Dpto. EDAN, University of Sevilla, Aptdo. 1160, 41080 Sevilla, Spain

2. 

Laboratoire de Mathématiques, Université Blaise Pascal (Clermont-Ferrand), UMR CNRS 6620, Campus des Cézeaux, 63177 Aubière, France

Received  November 2011 Revised  May 2012 Published  August 2012

This paper deals with the numerical computation of distributed null controls for semi-linear 1D heat equations, in the sublinear and slightly superlinear cases. Under sharp growth assumptions, the existence of controls has been obtained in [Fernandez-Cara $\&$ Zuazua, Null and approximate controllability for weakly blowing up semi-linear heat equation, 2000] via a fixed point reformulation; see also [Barbu, Exact controllability of the superlinear heat equation, 2000]. More precisely, Carleman estimates and Kakutani's Theorem together ensure the existence of solutions to fixed points for an equivalent fixed point reformulated problem. A nontrivial difficulty appears when we want to extract from the associated Picard iterates a convergent (sub)sequence. In this paper, we introduce and analyze a least squares reformulation of the problem; we show that this strategy leads to an effective and constructive way to compute fixed points. We also formulate and apply a Newton-Raphson algorithm in this context. Several numerical experiments that make it possible to test and compare these methods are performed.
Citation: Enrique Fernández-Cara, Arnaud Münch. Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods. Mathematical Control & Related Fields, 2012, 2 (3) : 217-246. doi: 10.3934/mcrf.2012.2.217
References:
[1]

V. Barbu, Exact controllability of the superlinear heat equation,, Appl. Math. Optim., 42 (2000), 73.   Google Scholar

[2]

F. Ben Belgacem and S. M. Kaber, On the Dirichlet boundary controllability of the one-dimensional heat equation: Semi-analytical calculations and ill-posedness degree,, Inverse Problems, 27 (2011).  doi: 10.1088/0266-5611/27/5/055012.  Google Scholar

[3]

F. Boyer, F. Hubert and J. Le Rousseau, Uniform controllability properties for space/time-discretized parabolic equations,, Numerische Mathematik, 118 (2011), 601.  doi: 10.1007/s00211-011-0368-1.  Google Scholar

[4]

C. Carthel, R. Glowinski and J.-L. Lions, On exact and approximate boundary controllabilities for the heat equation: A numerical approach,, J. Optimization, 82 (1994), 429.   Google Scholar

[5]

T. Cazenave and A. Haraux, "Introduction aux Problèmes d'Évolution Semi-Linéaires,", Mathématiques & Applications, 1 (1990).   Google Scholar

[6]

I. Charpentier and Y. Maday, Identifications numériques de contrôles distribués pour l'équation des ondes,, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 779.   Google Scholar

[7]

J.-M. Coron, "Control and Nonlinearity,", Mathematical Surveys and Monographs, 136 (2007).   Google Scholar

[8]

J.-M. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations,, SIAM J. Control Optim., 43 (2004), 549.  doi: 10.1137/S036301290342471X.  Google Scholar

[9]

C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation,, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 31.   Google Scholar

[10]

E. Fernández-Cara, Null controllability of the semilinear heat equation,, ESAIM Control Optim. Calc. Var., 2 (1997), 87.  doi: 10.1051/cocv:1997104.  Google Scholar

[11]

E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability,, SIAM J. Control Optim., 45 (2006), 1399.   Google Scholar

[12]

E. Fernández-Cara and A. Münch, Numerical null controllability of the 1D heat equation: Primal algorithms,, preprint, (2010).   Google Scholar

[13]

E. Fernández-Cara and A. Münch, Numerical null controllability of the 1D heat equation: Dual algorithms,, preprint, (2010).   Google Scholar

[14]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations,, Ann. Inst. Henri Poincaré, 17 (2000), 583.   Google Scholar

[15]

X. Fu, J. Yong and X. Zhang, Exact controllability for the multidimensional semilinear hyperbolic equations,, SIAM J. Control Optim., 46 (2007), 1578.  doi: 10.1137/040610222.  Google Scholar

[16]

S. Ervedoza and J. Valein, On the observability of abstract time-discrete linear parabolic equations,, Rev. Mat. Complut., 23 (2010), 163.  doi: 10.1007/s13163-009-0014-y.  Google Scholar

[17]

A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolution Equations,", Lecture Notes Series, 34 (1996).   Google Scholar

[18]

R. Glowinski, J. He and J.-L. Lions, "Exact and Approximate Controllability for Distributed Parameter Systems. A Numerical Approach,", Encyclopedia of Mathematics and its Applications, 117 (2008).   Google Scholar

[19]

F. Hecht, A. Le Hyaric, J. Morice, K. Ohtsuka and O. Pironneau, FreeFem++, Third edition, Version 3.12., Available from: , ().   Google Scholar

[20]

O. Yu. Imanuvilov, Controllability of parabolic equations, (Russian),, Mat. Sb., 186 (1995), 109.   Google Scholar

[21]

S. Labbé and E. Trélat, Uniform controllability of semidiscrete approximations of parabolic control systems,, Systems Control Lett., 55 (2006), 597.   Google Scholar

[22]

A. Lopez and E. Zuazua, Some new results to the null controllability of the 1-d heat equation,, in, (1998), 1997.   Google Scholar

[23]

I. Lasiecka and R. Triggiani, Exact controllability of semilinear abstract systems with applications to waves and plates boundary control,, Appl. Math. Optim., 23 (1991), 109.  doi: 10.1007/BF01442394.  Google Scholar

[24]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur,, Comm. Partial Differential Equations, 20 (1995), 335.  doi: 10.1080/03605309508821097.  Google Scholar

[25]

J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1. Contrôlabilité exacte,, Recherches en Mathématiques Appliquées, 8 (1988).   Google Scholar

[26]

A. Münch and E. Zuazua, Numerical approximation of null controls for the heat equation: Ill-posedness and remedies,, Inverse Problems, 26 (2010).   Google Scholar

[27]

D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations,, Studies in Appl. Math., 52 (1973), 189.   Google Scholar

[28]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions,, SIAM Rev., 20 (1978), 639.  doi: 10.1137/1020095.  Google Scholar

[29]

X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations, "Proceedings of the International Congress of Mathematicians,", Vol. IV, (2010), 3008.   Google Scholar

[30]

E. Zuazua, Exact boundary controllability for the semilinear wave equation,, in, (1991).   Google Scholar

show all references

References:
[1]

V. Barbu, Exact controllability of the superlinear heat equation,, Appl. Math. Optim., 42 (2000), 73.   Google Scholar

[2]

F. Ben Belgacem and S. M. Kaber, On the Dirichlet boundary controllability of the one-dimensional heat equation: Semi-analytical calculations and ill-posedness degree,, Inverse Problems, 27 (2011).  doi: 10.1088/0266-5611/27/5/055012.  Google Scholar

[3]

F. Boyer, F. Hubert and J. Le Rousseau, Uniform controllability properties for space/time-discretized parabolic equations,, Numerische Mathematik, 118 (2011), 601.  doi: 10.1007/s00211-011-0368-1.  Google Scholar

[4]

C. Carthel, R. Glowinski and J.-L. Lions, On exact and approximate boundary controllabilities for the heat equation: A numerical approach,, J. Optimization, 82 (1994), 429.   Google Scholar

[5]

T. Cazenave and A. Haraux, "Introduction aux Problèmes d'Évolution Semi-Linéaires,", Mathématiques & Applications, 1 (1990).   Google Scholar

[6]

I. Charpentier and Y. Maday, Identifications numériques de contrôles distribués pour l'équation des ondes,, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 779.   Google Scholar

[7]

J.-M. Coron, "Control and Nonlinearity,", Mathematical Surveys and Monographs, 136 (2007).   Google Scholar

[8]

J.-M. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations,, SIAM J. Control Optim., 43 (2004), 549.  doi: 10.1137/S036301290342471X.  Google Scholar

[9]

C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation,, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 31.   Google Scholar

[10]

E. Fernández-Cara, Null controllability of the semilinear heat equation,, ESAIM Control Optim. Calc. Var., 2 (1997), 87.  doi: 10.1051/cocv:1997104.  Google Scholar

[11]

E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability,, SIAM J. Control Optim., 45 (2006), 1399.   Google Scholar

[12]

E. Fernández-Cara and A. Münch, Numerical null controllability of the 1D heat equation: Primal algorithms,, preprint, (2010).   Google Scholar

[13]

E. Fernández-Cara and A. Münch, Numerical null controllability of the 1D heat equation: Dual algorithms,, preprint, (2010).   Google Scholar

[14]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations,, Ann. Inst. Henri Poincaré, 17 (2000), 583.   Google Scholar

[15]

X. Fu, J. Yong and X. Zhang, Exact controllability for the multidimensional semilinear hyperbolic equations,, SIAM J. Control Optim., 46 (2007), 1578.  doi: 10.1137/040610222.  Google Scholar

[16]

S. Ervedoza and J. Valein, On the observability of abstract time-discrete linear parabolic equations,, Rev. Mat. Complut., 23 (2010), 163.  doi: 10.1007/s13163-009-0014-y.  Google Scholar

[17]

A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolution Equations,", Lecture Notes Series, 34 (1996).   Google Scholar

[18]

R. Glowinski, J. He and J.-L. Lions, "Exact and Approximate Controllability for Distributed Parameter Systems. A Numerical Approach,", Encyclopedia of Mathematics and its Applications, 117 (2008).   Google Scholar

[19]

F. Hecht, A. Le Hyaric, J. Morice, K. Ohtsuka and O. Pironneau, FreeFem++, Third edition, Version 3.12., Available from: , ().   Google Scholar

[20]

O. Yu. Imanuvilov, Controllability of parabolic equations, (Russian),, Mat. Sb., 186 (1995), 109.   Google Scholar

[21]

S. Labbé and E. Trélat, Uniform controllability of semidiscrete approximations of parabolic control systems,, Systems Control Lett., 55 (2006), 597.   Google Scholar

[22]

A. Lopez and E. Zuazua, Some new results to the null controllability of the 1-d heat equation,, in, (1998), 1997.   Google Scholar

[23]

I. Lasiecka and R. Triggiani, Exact controllability of semilinear abstract systems with applications to waves and plates boundary control,, Appl. Math. Optim., 23 (1991), 109.  doi: 10.1007/BF01442394.  Google Scholar

[24]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur,, Comm. Partial Differential Equations, 20 (1995), 335.  doi: 10.1080/03605309508821097.  Google Scholar

[25]

J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1. Contrôlabilité exacte,, Recherches en Mathématiques Appliquées, 8 (1988).   Google Scholar

[26]

A. Münch and E. Zuazua, Numerical approximation of null controls for the heat equation: Ill-posedness and remedies,, Inverse Problems, 26 (2010).   Google Scholar

[27]

D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations,, Studies in Appl. Math., 52 (1973), 189.   Google Scholar

[28]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions,, SIAM Rev., 20 (1978), 639.  doi: 10.1137/1020095.  Google Scholar

[29]

X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations, "Proceedings of the International Congress of Mathematicians,", Vol. IV, (2010), 3008.   Google Scholar

[30]

E. Zuazua, Exact boundary controllability for the semilinear wave equation,, in, (1991).   Google Scholar

[1]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[2]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[3]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[4]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[5]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[6]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[7]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[8]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[9]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[10]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[11]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[12]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[13]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[14]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[15]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[16]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[17]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[18]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[19]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[20]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]