Advanced Search
Article Contents
Article Contents

Time-inconsistent optimal control problems and the equilibrium HJB equation

Abstract Related Papers Cited by
  • A general time-inconsistent optimal control problem is considered for stochastic differential equations with deterministic coefficients. Under suitable conditions, a Hamilton-Jacobi-Bellman type equation is derived for the equilibrium value function of the problem. Well-posedness such an equation is studied, and time-consistent equilibrium strategies are constructed. As special cases, the linear-quadratic problem and a generalized Merton's portfolio problem are investigated.
    Mathematics Subject Classification: Primary: 93E20, 49L20, 49N10, 49N70; Secondary: 35Q93,91A23, 91A65.


    \begin{equation} \\ \end{equation}
  • [1]

    S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation, Rev. Finan. Stud., 23 (2010), 2970-3016.doi: 10.1093/rfs/hhq028.


    T. Björk and A. MurgociA general theory of Markovian time inconsistent stochasitic control problem, working paper.


    T. Björk, A. Murgoci and X. Y. ZhouMean varaiance portfolio optimization with state dependent risk aversion, Math. Finance, in press.


    E. V. Böhm-Bawerk, "The Positive Theory of Capital,'' Books for Libraries Press, Freeport, New York, 1891.


    A. Caplin and J. Leahy, The recursive approach to time inconsistency, J. Econ. Theory, 131 (2006), 134-156.doi: 10.1016/j.jet.2005.05.006.


    I. Ekeland and A. Lazrak, The golden rule when preferences are time inconsistent, Math. Finan. Econ., 4 (2010), 29-55.


    I. Ekeland and T. A. Pirvu, Investment and consumption without commitment, Math. Finan. Econ., 2 (2008), 57-86.


    I. Ekeland, O. Mbodji and T. A. Pirvu, Time-consistent portfolio management, SIAM J. Financial Math., 3 (2012), 1-32.


    W. H. Fleming and H. M. Soner, "Controlled Markov Processes and Viscosity Solutions,'' 2nd edition, Stochastic Modelling and Applied Probability, 25, Springer, New York, 2006.


    A. Friedman, "Partial Differential Equations of Parabolic Type,'' Prentice Hall, Inc., Englewood Cliffs, NJ, 1964.


    S. M. Goldman, Consistent plans, Review of Economic Studies, 47 (1980), 533-537.


    S. R. Grenadier and N. Wang, Investment under uncertainty and time-inconsistent preferences, J. Finan. Econ., 84 (2007), 2-39.


    P. J.-J. Herings and K. I. M. Rohde, Time-inconsistent preferences in a general equilibrium model, Econ. Theory, 29 (2006), 591-619.doi: 10.1007/s00199-005-0020-3.


    Y. Hu, H. Jin and X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control, arXiv:1111.0818, 2011.


    D. Hume, "A Treatise of Human Nature,'' First edition, 1739; Reprint, Oxford Univ. Press, New York, 1978.


    W. S. Jevons, "Theory of Political Economy,'' McMillan, London, 1871.


    L. Karp and I. H. Lee, Time-consistent policies, J. Econ. Theory, 112 (2003), 353-364.doi: 10.1016/S0022-0531(03)00067-X.


    D. Laibson, Golden eggs and hyperbolic discounting, Quarterly J. Econ., 112 (1997), 443-477.doi: 10.1162/003355397555253.


    J. Ma, P. Protter and J. Yong, Solving forward-backward stochastic differential equations explicitly-a four-step scheme, Probab. Theory Related Fields, 98 (1994), 339-359.doi: 10.1007/BF01192258.


    J. Ma and J. Yong, "Forward-Backward Stochastic Differential Equations and Their Applications,'' Lecture Notes in Math., 1702, Springer-Verlag, Berlin, 1999.


    A. Malthus, An essay on the principle of population, in "The Works of Thomas Robert Malthus," Vols. 2-3 (eds. E. A. Wrigley and D. Souden), W. Pickering, London, 1986.


    A. Marshall, "Principles of Economics,'' 1st ed., 1890; 8th ed., Macmillan, London, 1920.


    J. Marin-Solano and J. Navas, Consumption and portfolio rules for time-inconsistent investors, European J. Operational Research, 201 (2010), 860-872.doi: 10.1016/j.ejor.2009.04.005.


    J. Marin-Solano and E. V. Shevkoplyas, Non-constant discounting and differential games with random time horizon, Automatica J. IFAC, 47 (2011), 2626-2638.doi: 10.1016/j.automatica.2011.09.010.


    M. Miller and M. Salmon, Dynamic games and the time inconsistency of optimal policy in open economics, The Economic Journal, 95 (1985), 124-137.doi: 10.2307/2232876.


    I. Palacios-Huerta, Time-inconsistent preferences in Adam Smith and Davis Hume, History of Political Economy, 35 (2003), 241-268.doi: 10.1215/00182702-35-2-241.


    V. Pareto, "Manuel d'Économie Politique,'' Girard and Brieve, Paris, 1909.


    B. Peleg and M. E. Yaari, On the existence of a consistent course of action when tastes are changing, Review of Economic Studies, 40 (1973), 391-401.


    R. A. Pollak, Consistent planning, Review of Economic Studies, 35 (1968), 185-199.doi: 10.2307/2296547.


    A. Smith, "The Theory of Moral Sentiments,'' First edition, 1759; Reprint, Oxford Univ. Press, 1976.


    R. H. Strotz, Myopia and inconsistency indynamic utility maximization, Review of Econ. Studies, 23 (1955), 165-180.doi: 10.2307/2295722.


    L. Tesfatsion, Time inconsistency of benevolent government economics, J. Public Economics, 31 (1986), 25-52.doi: 10.1016/0047-2727(86)90070-8.


    J. Yong, Backward stochastic Volterra integral equations and some related problems, Stoch. Proc. Appl., 116 (2006), 779-795.doi: 10.1016/j.spa.2006.01.005.


    J. Yong, Well-posedness and regularity of backward stochastic Volterra integral equations, Prob. Theory Rel. Fields, 142 (2008), 21-77.doi: 10.1007/s00440-007-0098-6.


    J. Yong, A deterministic linear quadratic time-inconsistent optimal control problem, Math. Control Related Fields, 1 (2011), 83-118.


    J. Yong, Deterministic time-inconsistent optimal control problems-An essentially cooperative approach, Acta Math. Appl. Sinica Engl. Ser., 28 (2012), 1-30.


    J. Yong and X. Y. Zhou, "Stochastic Controls. Hamiltonian Systems and HJB Equations,'' Applications of Mathematics (New York), 43, Springer-Verlag, New York, 1999.

  • 加载中

Article Metrics

HTML views() PDF downloads(201) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint