• Previous Article
    Existence of absolute minimizers for noncoercive Hamiltonians and viscosity solutions of the Aronsson equation
  • MCRF Home
  • This Issue
  • Next Article
    Local controllability of the $N$-dimensional Boussinesq system with $N-1$ scalar controls in an arbitrary control domain
December  2012, 2(4): 383-398. doi: 10.3934/mcrf.2012.2.383

Optimal syntheses for state constrained problems with application to optimization of cancer therapies

1. 

Department of Mathematical Sciences, and Center for Computational and Integrative Biology, Rutgers University - Camden, 227 Penn Street, Camden NJ 08102, United States

Received  November 2011 Revised  June 2012 Published  October 2012

The use of combined therapies to treat cancer is common nowadays and some papers already addressed the relative optimization problems. In particular, it is natural to have state constraints, which usually correspond to bounds on feasible amounts of drugs to be used. The application of Pontryagin Maximum Principle is particularly difficult in such case. Therefore, we resort to sufficient conditions for optimality to achieve results more easily applicable to systems biology models. The approach is developed both for candidate value functions and optimal syntheses. Then it is shown at work on some specific problems in combined cancer therapy.
Citation: Benedetto Piccoli. Optimal syntheses for state constrained problems with application to optimization of cancer therapies. Mathematical Control & Related Fields, 2012, 2 (4) : 383-398. doi: 10.3934/mcrf.2012.2.383
References:
[1]

M. Bardi and I. Capuzzo-Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,", Birkhauser Boston, (1997).   Google Scholar

[2]

A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control,", American Institute of Mathematical Sciences (AIMS), (2007).   Google Scholar

[3]

T. Burden, J. Ernstberger and K. Renee Fister, Optimal control applied to immunotherapy,, Discrete Continuous Dynam. Systems - B, 4 (2004), 135.   Google Scholar

[4]

P. Cannarsa, H. Frankowska and E. Marchini, On Bolza optimal control problems with constraints,, Discrete Continuous Dynam. Systems - B, 11 (2009), 629.  doi: 10.3934/dcdsb.2009.11.629.  Google Scholar

[5]

A. Cappuccio, F. Castiglione and B. Piccoli, Determination of the optimal therapeutic protocols in cancer immunotherapy,, Math. Biosci., 209 (2007), 1.  doi: 10.1016/j.mbs.2007.02.009.  Google Scholar

[6]

F. Castiglione and B. Piccoli, Optimal control in a model of dendritic cell transfection cancer immunotheraphy,, in, (2004), 585.   Google Scholar

[7]

F. Castiglione and B. Piccoli, Optimal control in a model of dendritic cell transfection cancer immunotherapy,, Bull. Math. Biol., 68 (2006), 255.  doi: 10.1007/s11538-005-9014-3.  Google Scholar

[8]

F. Castiglione and B. Piccoli, Cancer immunotherapy, mathematical modeling and optimal control,, J. Theoret. Biol., 247 (2007), 723.  doi: 10.1016/j.jtbi.2007.04.003.  Google Scholar

[9]

S. Chareyron and M. Alamir, Mixed immunotherapy and chemotherapy of tumors: feedback design and model updating schemes,, J. Theor. Biol., 258 (2009), 444.  doi: 10.1016/j.jtbi.2008.07.002.  Google Scholar

[10]

L. G. de Pillis, K. Renee Fister, W. Gu, C. Collins, M. Daub, D. Gross, J. Moore and B. Preskill, Seeking bang-bang solutions of mixed immuno-chemotherapy of tumors,, Electron. J. Differential Equations, 171 (2007).   Google Scholar

[11]

L. G. de Pillis, W. Gu and A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: Modeling, applications and biological interpretations,, J. Theoret. Biol., 238 (2006), 841.  doi: 10.1016/j.jtbi.2005.06.037.  Google Scholar

[12]

A. D'Onofrio, U. Ledzewicz, H. Maurer and H. Schaettler, On optimal delivery of combination of therapy for tumors,, Math. Biosci., 222 (2009), 13.  doi: 10.1016/j.mbs.2009.08.004.  Google Scholar

[13]

K. Renee Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies,, SIAM J. Appl. Math., 63 (2003), 1954.  doi: 10.1137/S0036139902413489.  Google Scholar

[14]

R. A. Goldsby, T. J. Kindt and B. A. Osborne, "Kuby Immunology,", IV. eds. W. H. Freeman and Company, (2000).   Google Scholar

[15]

R. F. Hartl, S. P. Sethi and R. G. Vickson, A survey of the maximum principles for optimal control problems with state constraints,, SIAM Rev., 37 (1995), 181.   Google Scholar

[16]

D. Kirschner and J. C. Panetta, Modeling immunotherapy of teh tumor-immune interaction,, J. Math. Biol., 37 (1998), 235.  doi: 10.1007/s002850050127.  Google Scholar

[17]

U. Ledzewicz, J. Munden and H. Schaettler, Scheduling of angiogenic inhibitors for Gompertzian and logistic tumor growth models,, Discrete Continuous Dynam. Systems - B, 12 (2009), 415.  doi: 10.3934/dcdsb.2009.12.415.  Google Scholar

[18]

U. Ledzewicz, H. Schaettler and A. D'Onofrio, Optimal control for combination of therapy in cancer,, in, (2008), 1537.   Google Scholar

[19]

B. Piccoli, Infinite time regular synthesis,, ESAIM Control Optim. Calc. Var., 3 (1998), 381.   Google Scholar

[20]

B. Piccoli and H. J. Sussmann, Regular synthesis and sufficiency conditions for optimality,, SIAM J. Control Optim., 39 (2000), 359.  doi: 10.1137/S0363012999322031.  Google Scholar

[21]

R. Vinter, "Optimal Control,", Birkhauser Boston, (2000).   Google Scholar

show all references

References:
[1]

M. Bardi and I. Capuzzo-Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,", Birkhauser Boston, (1997).   Google Scholar

[2]

A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control,", American Institute of Mathematical Sciences (AIMS), (2007).   Google Scholar

[3]

T. Burden, J. Ernstberger and K. Renee Fister, Optimal control applied to immunotherapy,, Discrete Continuous Dynam. Systems - B, 4 (2004), 135.   Google Scholar

[4]

P. Cannarsa, H. Frankowska and E. Marchini, On Bolza optimal control problems with constraints,, Discrete Continuous Dynam. Systems - B, 11 (2009), 629.  doi: 10.3934/dcdsb.2009.11.629.  Google Scholar

[5]

A. Cappuccio, F. Castiglione and B. Piccoli, Determination of the optimal therapeutic protocols in cancer immunotherapy,, Math. Biosci., 209 (2007), 1.  doi: 10.1016/j.mbs.2007.02.009.  Google Scholar

[6]

F. Castiglione and B. Piccoli, Optimal control in a model of dendritic cell transfection cancer immunotheraphy,, in, (2004), 585.   Google Scholar

[7]

F. Castiglione and B. Piccoli, Optimal control in a model of dendritic cell transfection cancer immunotherapy,, Bull. Math. Biol., 68 (2006), 255.  doi: 10.1007/s11538-005-9014-3.  Google Scholar

[8]

F. Castiglione and B. Piccoli, Cancer immunotherapy, mathematical modeling and optimal control,, J. Theoret. Biol., 247 (2007), 723.  doi: 10.1016/j.jtbi.2007.04.003.  Google Scholar

[9]

S. Chareyron and M. Alamir, Mixed immunotherapy and chemotherapy of tumors: feedback design and model updating schemes,, J. Theor. Biol., 258 (2009), 444.  doi: 10.1016/j.jtbi.2008.07.002.  Google Scholar

[10]

L. G. de Pillis, K. Renee Fister, W. Gu, C. Collins, M. Daub, D. Gross, J. Moore and B. Preskill, Seeking bang-bang solutions of mixed immuno-chemotherapy of tumors,, Electron. J. Differential Equations, 171 (2007).   Google Scholar

[11]

L. G. de Pillis, W. Gu and A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: Modeling, applications and biological interpretations,, J. Theoret. Biol., 238 (2006), 841.  doi: 10.1016/j.jtbi.2005.06.037.  Google Scholar

[12]

A. D'Onofrio, U. Ledzewicz, H. Maurer and H. Schaettler, On optimal delivery of combination of therapy for tumors,, Math. Biosci., 222 (2009), 13.  doi: 10.1016/j.mbs.2009.08.004.  Google Scholar

[13]

K. Renee Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies,, SIAM J. Appl. Math., 63 (2003), 1954.  doi: 10.1137/S0036139902413489.  Google Scholar

[14]

R. A. Goldsby, T. J. Kindt and B. A. Osborne, "Kuby Immunology,", IV. eds. W. H. Freeman and Company, (2000).   Google Scholar

[15]

R. F. Hartl, S. P. Sethi and R. G. Vickson, A survey of the maximum principles for optimal control problems with state constraints,, SIAM Rev., 37 (1995), 181.   Google Scholar

[16]

D. Kirschner and J. C. Panetta, Modeling immunotherapy of teh tumor-immune interaction,, J. Math. Biol., 37 (1998), 235.  doi: 10.1007/s002850050127.  Google Scholar

[17]

U. Ledzewicz, J. Munden and H. Schaettler, Scheduling of angiogenic inhibitors for Gompertzian and logistic tumor growth models,, Discrete Continuous Dynam. Systems - B, 12 (2009), 415.  doi: 10.3934/dcdsb.2009.12.415.  Google Scholar

[18]

U. Ledzewicz, H. Schaettler and A. D'Onofrio, Optimal control for combination of therapy in cancer,, in, (2008), 1537.   Google Scholar

[19]

B. Piccoli, Infinite time regular synthesis,, ESAIM Control Optim. Calc. Var., 3 (1998), 381.   Google Scholar

[20]

B. Piccoli and H. J. Sussmann, Regular synthesis and sufficiency conditions for optimality,, SIAM J. Control Optim., 39 (2000), 359.  doi: 10.1137/S0363012999322031.  Google Scholar

[21]

R. Vinter, "Optimal Control,", Birkhauser Boston, (2000).   Google Scholar

[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[2]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[3]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[4]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[5]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[6]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[7]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[8]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[9]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[10]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[11]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[12]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[13]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[14]

Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, 2021, 17 (1) : 447-465. doi: 10.3934/jimo.2019120

[15]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[16]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[17]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[18]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

[19]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[20]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]