December  2012, 2(4): 429-455. doi: 10.3934/mcrf.2012.2.429

Controllability of the heat and wave equations and their finite difference approximations by the shape of the domain

1. 

Mathematical Neuroscience Laboratory, CIRB-Collège de France and BANG Laboratory, INRIA Paris-Rocquencourt, 11, place Marcelin Berthelot, 75005 Paris, France

Received  February 2012 Revised  July 2012 Published  October 2012

In this article we study a controllability problem for a parabolic and a hyperbolic partial differential equations in which the control is the shape of the domain where the equation holds. The quantity to be controlled is the trace of the solution into an open subdomain and at a given time, when the right hand side source term is known. The mapping that associates this trace to the shape of the domain is nonlinear. We show (i) an approximate controllability property for the linearized parabolic problem and (ii) an exact local controllability property for the linearized and the nonlinear equations in the hyperbolic case. We then address the same questions in the context of a finite difference spatial semi-discretization in both the parabolic and hyperbolic problems. In this discretized case again we prove a local controllability result for the parabolic problem, and an exact controllability for the hyperbolic case, applying a local surjectivity theorem together with a unique continuation property of the underlying adjoint discrete system.
Citation: Jonathan Touboul. Controllability of the heat and wave equations and their finite difference approximations by the shape of the domain. Mathematical Control & Related Fields, 2012, 2 (4) : 429-455. doi: 10.3934/mcrf.2012.2.429
References:
[1]

G. Allaire, "Conception Optimale de Structures,'', Springer-Verlag, (2007). Google Scholar

[2]

Haim Brezis, "Analyse Fonctionnelle,'', Masson, (1983). Google Scholar

[3]

C. Castro and S. Micu, Boundary controllability of a linear semi-discrete 1-d wave equation derived from a mixed finite element method,, Numerische Mathematik, 102 (2006), 413. doi: 10.1007/s00211-005-0651-0. Google Scholar

[4]

J. Céa, Numerical methods of optimum shape design,, in, (1981). Google Scholar

[5]

J. Céa, Optimization of distributed parameter structures,, NATO Advanced study Institutes series, (1981). Google Scholar

[6]

D. Chenais and E. Zuazua, Controlability of an elliptic equation and its finite difference approximation by the shape of the domain,, Numerische Mathematik, 95 (2003), 63. doi: 10.1007/s00211-002-0443-8. Google Scholar

[7]

D. Chenais, On the existence of a solution in a domain identification problem,, Journal of Math. Analysis and Applications, 52 (1975), 189. doi: 10.1016/0022-247X(75)90091-8. Google Scholar

[8]

E. Holmgren., Über systeme von linearen partiellen differentialgleichungen,, Öfversigt af Kongl. Vetenskaps-Academien Förhandlinger, 58 (1901), 91. Google Scholar

[9]

L. Hörmander, "Linear Partial Differential Operators,'', Springer-Verlag, (1969). Google Scholar

[10]

J. A. Infante and E. Zuazua., Boundary observability for the space semi-discretizations of the 1 - d wave equation,, Mathematical Modeling and Numerical Analysis, 33 (1999), 407. doi: 10.1051/m2an:1999123. Google Scholar

[11]

J. L. Lions., "Contrôle Optimal de Systemes Gouvernés par des Équations aux Dérivées Partielles,'', Dunod, (1968). Google Scholar

[12]

J. L. Lions., "Contrôlabilité Exacte, Stabilisation et Perturbations de Systèmes Distribués (I and II),'', Masson, (1988). Google Scholar

[13]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed sytems,, SIAM Review, 30 (1988), 1. doi: 10.1137/1030001. Google Scholar

[14]

D. G. Luenberger, "Optimization by Vector Space Methods,'', John Wiley and Sons Inc., (1969). Google Scholar

[15]

F. Murat and J. Simon., Sur le Contrôle par un Domaine Géométrique,, Publication du Laboratoire d'analyse numérique, (1976). Google Scholar

[16]

M. Negreanu and E. Zuazua, Uniform boundary controllability of a discrete 1-d wave equation,, Systems and Control Letters, 48 (2003), 261. doi: 10.1016/S0167-6911(02)00271-2. Google Scholar

[17]

B. Rousselet, Optimization of distributed parameter structures,, NATO Advanced Study Institutes Series, 50 (1981), 1474. Google Scholar

[18]

J. Simon, Differentiation with respect to the domain in boundary value problems,, Numer. Func. Anal. Optim., 2 (1980), 649. Google Scholar

[19]

J. Simon., "Diferenciación con Respecto al Dominio,", Lecture notes, (1989). Google Scholar

[20]

J. P. Zolesio., Optimization of distributed parameter structures,, NATO Advanced Studies Series, 50 (1981), 1089. Google Scholar

[21]

E. Zuazua, Some problems and results on the controllability of partial differential equations,, in, (1996). Google Scholar

[22]

E. Zuazua, Some new results related to the null controllability of the 1-d heat equation,, Seminaire X-EDP, VIII (): 1997. Google Scholar

[23]

E. Zuazua, Boundary observability for the finite-difference space semi-discretizations of the 2-d wave equation in the square,, J. Math. Pures Appl., 78 (1999), 523. Google Scholar

[24]

E. Zuazua, Observability of the 1-d waves in heterogenous and semi discrete media,, In, (1999). Google Scholar

[25]

E. Zuazua, Controllability of partial differential equation and its semi-discrete approximations,, Discrete and Continuous Dynamical Systems, 8 (2002), 469. Google Scholar

show all references

References:
[1]

G. Allaire, "Conception Optimale de Structures,'', Springer-Verlag, (2007). Google Scholar

[2]

Haim Brezis, "Analyse Fonctionnelle,'', Masson, (1983). Google Scholar

[3]

C. Castro and S. Micu, Boundary controllability of a linear semi-discrete 1-d wave equation derived from a mixed finite element method,, Numerische Mathematik, 102 (2006), 413. doi: 10.1007/s00211-005-0651-0. Google Scholar

[4]

J. Céa, Numerical methods of optimum shape design,, in, (1981). Google Scholar

[5]

J. Céa, Optimization of distributed parameter structures,, NATO Advanced study Institutes series, (1981). Google Scholar

[6]

D. Chenais and E. Zuazua, Controlability of an elliptic equation and its finite difference approximation by the shape of the domain,, Numerische Mathematik, 95 (2003), 63. doi: 10.1007/s00211-002-0443-8. Google Scholar

[7]

D. Chenais, On the existence of a solution in a domain identification problem,, Journal of Math. Analysis and Applications, 52 (1975), 189. doi: 10.1016/0022-247X(75)90091-8. Google Scholar

[8]

E. Holmgren., Über systeme von linearen partiellen differentialgleichungen,, Öfversigt af Kongl. Vetenskaps-Academien Förhandlinger, 58 (1901), 91. Google Scholar

[9]

L. Hörmander, "Linear Partial Differential Operators,'', Springer-Verlag, (1969). Google Scholar

[10]

J. A. Infante and E. Zuazua., Boundary observability for the space semi-discretizations of the 1 - d wave equation,, Mathematical Modeling and Numerical Analysis, 33 (1999), 407. doi: 10.1051/m2an:1999123. Google Scholar

[11]

J. L. Lions., "Contrôle Optimal de Systemes Gouvernés par des Équations aux Dérivées Partielles,'', Dunod, (1968). Google Scholar

[12]

J. L. Lions., "Contrôlabilité Exacte, Stabilisation et Perturbations de Systèmes Distribués (I and II),'', Masson, (1988). Google Scholar

[13]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed sytems,, SIAM Review, 30 (1988), 1. doi: 10.1137/1030001. Google Scholar

[14]

D. G. Luenberger, "Optimization by Vector Space Methods,'', John Wiley and Sons Inc., (1969). Google Scholar

[15]

F. Murat and J. Simon., Sur le Contrôle par un Domaine Géométrique,, Publication du Laboratoire d'analyse numérique, (1976). Google Scholar

[16]

M. Negreanu and E. Zuazua, Uniform boundary controllability of a discrete 1-d wave equation,, Systems and Control Letters, 48 (2003), 261. doi: 10.1016/S0167-6911(02)00271-2. Google Scholar

[17]

B. Rousselet, Optimization of distributed parameter structures,, NATO Advanced Study Institutes Series, 50 (1981), 1474. Google Scholar

[18]

J. Simon, Differentiation with respect to the domain in boundary value problems,, Numer. Func. Anal. Optim., 2 (1980), 649. Google Scholar

[19]

J. Simon., "Diferenciación con Respecto al Dominio,", Lecture notes, (1989). Google Scholar

[20]

J. P. Zolesio., Optimization of distributed parameter structures,, NATO Advanced Studies Series, 50 (1981), 1089. Google Scholar

[21]

E. Zuazua, Some problems and results on the controllability of partial differential equations,, in, (1996). Google Scholar

[22]

E. Zuazua, Some new results related to the null controllability of the 1-d heat equation,, Seminaire X-EDP, VIII (): 1997. Google Scholar

[23]

E. Zuazua, Boundary observability for the finite-difference space semi-discretizations of the 2-d wave equation in the square,, J. Math. Pures Appl., 78 (1999), 523. Google Scholar

[24]

E. Zuazua, Observability of the 1-d waves in heterogenous and semi discrete media,, In, (1999). Google Scholar

[25]

E. Zuazua, Controllability of partial differential equation and its semi-discrete approximations,, Discrete and Continuous Dynamical Systems, 8 (2002), 469. Google Scholar

[1]

Jonathan Touboul. Erratum on: Controllability of the heat and wave equations and their finite difference approximations by the shape of the domain. Mathematical Control & Related Fields, 2019, 9 (1) : 221-222. doi: 10.3934/mcrf.2019006

[2]

Enrique Zuazua. Controllability of partial differential equations and its semi-discrete approximations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 469-513. doi: 10.3934/dcds.2002.8.469

[3]

Thuy N. T. Nguyen. Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and applications to controllability. Mathematical Control & Related Fields, 2014, 4 (2) : 203-259. doi: 10.3934/mcrf.2014.4.203

[4]

Xiangqing Zhao, Bing-Yu Zhang. Global controllability and stabilizability of Kawahara equation on a periodic domain. Mathematical Control & Related Fields, 2015, 5 (2) : 335-358. doi: 10.3934/mcrf.2015.5.335

[5]

Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143

[6]

Umberto De Maio, Akamabadath K. Nandakumaran, Carmen Perugia. Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition. Evolution Equations & Control Theory, 2015, 4 (3) : 325-346. doi: 10.3934/eect.2015.4.325

[7]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[8]

Mohamed Ouzahra. Controllability of the semilinear wave equation governed by a multiplicative control. Evolution Equations & Control Theory, 2019, 8 (4) : 669-686. doi: 10.3934/eect.2019039

[9]

Víctor Hernández-Santamaría, Liliana Peralta. Some remarks on the Robust Stackelberg controllability for the heat equation with controls on the boundary. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-19. doi: 10.3934/dcdsb.2019177

[10]

Arnaud Debussche, Jacques Printems. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 761-781. doi: 10.3934/dcdsb.2006.6.761

[11]

Patrick Martinez, Judith Vancostenoble. Exact controllability in "arbitrarily short time" of the semilinear wave equation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 901-924. doi: 10.3934/dcds.2003.9.901

[12]

Arnaud Heibig, Mohand Moussaoui. Exact controllability of the wave equation for domains with slits and for mixed boundary conditions. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 367-386. doi: 10.3934/dcds.1996.2.367

[13]

Sylvie Benzoni-Gavage, Pierre Huot. Existence of semi-discrete shocks. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 163-190. doi: 10.3934/dcds.2002.8.163

[14]

Umberto Biccari. Boundary controllability for a one-dimensional heat equation with a singular inverse-square potential. Mathematical Control & Related Fields, 2019, 9 (1) : 191-219. doi: 10.3934/mcrf.2019011

[15]

Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations & Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020

[16]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[17]

Fabio Camilli, Francisco Silva. A semi-discrete approximation for a first order mean field game problem. Networks & Heterogeneous Media, 2012, 7 (2) : 263-277. doi: 10.3934/nhm.2012.7.263

[18]

Enrique Fernández-Cara, Arnaud Münch. Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods. Mathematical Control & Related Fields, 2012, 2 (3) : 217-246. doi: 10.3934/mcrf.2012.2.217

[19]

Kim Dang Phung. Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1057-1093. doi: 10.3934/dcds.2008.20.1057

[20]

Eduardo Cerpa. Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 91-102. doi: 10.3934/cpaa.2010.9.91

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]