• Previous Article
    Optimal trend-following trading rules under a three-state regime switching model
  • MCRF Home
  • This Issue
  • Next Article
    Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms
March  2012, 2(1): 61-80. doi: 10.3934/mcrf.2012.2.61

Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints

1. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China, China

Received  June 2011 Revised  November 2011 Published  January 2012

This paper deals with the Pontryagin's principle of optimal control problems governed by the 2D Navier-Stokes equations with integral state constraints and coupled integral control--state constraints. As an application, the necessary conditions for the local solution in the sense of $L^r(0,T;L^2(\Omega))$ ($2 < r < \infty$) are also obtained.
Citation: Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61
References:
[1]

R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis,", 2nd edition, (1979).   Google Scholar

[2]

X. Li and J. Yong, "Optimal Control Theory for Infinite, Dimensional System, (1995).   Google Scholar

[3]

G. Wang, Pontryagin maximum principle of optimal control governed by fluid dynamic systems with two point boundary state constraint,, Nonlinear Anal., 51 (2002), 509.  doi: 10.1016/S0362-546X(01)00843-4.  Google Scholar

[4]

G. Wang and L. Wang, Maximum principle of state-constrained optimal control governed by fluid dynamic systems,, Nonlinear Anal., 52 (2003), 1911.  doi: 10.1016/S0362-546X(02)00282-1.  Google Scholar

[5]

H. Liu, Optimal control problems with state constraint governed by Navier-Stokes equations,, Nonlinear Anal., 73 (2010), 3924.  doi: 10.1016/j.na.2010.08.026.  Google Scholar

[6]

G. Wang, Optimal controls of 3-dimensional Navier-Stokes equations with state constraints,, SIAM J. Control Optim., 41 (2002), 583.  doi: 10.1137/S0363012901385769.  Google Scholar

[7]

E. Casas, J.-P. Raymond and H. Zidani, Pontryagin's principle for local solutions of control problems with mixed control-state constraints,, SIAM J. Control Optim., 39 (2000), 1182.   Google Scholar

[8]

J.-P. Raymond and H. Zidani, Pontryagin's principles for state-constrained control problems governed by semilinear parabolic equations with unbounded controls,, SIAM J. Control Optim., 36 (1998), 1853.   Google Scholar

[9]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: A survey,, Math. Control Relat. Fields, 1 (2011), 267.  doi: 10.3934/mcrf.2011.1.267.  Google Scholar

[10]

S. W. Hansen and O. Yu Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions,, Math. Control Relat. Fields, 1 (2011), 189.  doi: 10.3934/mcrf.2011.1.189.  Google Scholar

[11]

V. Barbu, The time optimal control of Navier-Stokes equations,, Systems Control Lett., 30 (1997), 93.  doi: 10.1016/S0167-6911(96)00083-7.  Google Scholar

[12]

L. Baudouin, E. Crépeau and J. Valein, Global Carleman estimate on a network for the wave equation and application to an inverse problem,, Math. Control Relat. Fields, 1 (2011), 307.  doi: 10.3934/mcrf.2011.1.307.  Google Scholar

[13]

I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. Part I: $H^1(\Omega)$-estimates,, J. Inv. Ill-Posed Problems, 12 (2004), 43.   Google Scholar

[14]

M. Badra, Global Carleman inequalities for Stokes and penalized Stokes equations,, Math. Control Relat. Fields, 1 (2011), 149.  doi: 10.3934/mcrf.2011.1.149.  Google Scholar

[15]

S. Ervedoza and E. Zuazua, Observability of heat processes by transmutation without geometric restrictions,, Math. Control Relat. Fields, 1 (2011), 177.  doi: 10.3934/mcrf.2011.1.177.  Google Scholar

[16]

R. Temam, "Navier-Stokes Equations and Nonlinear Functional Analysis,", CBMS-NSF Regional Conference Series in Applied Mathematics, (1983).   Google Scholar

[17]

H. O. Fattorini and S. Sritharan, Necessary and sufficient conditions for optimal controls in viscous flow problems,, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 211.  doi: 10.1017/S0308210500028444.  Google Scholar

[18]

E. Casas, J.-P. Raymond and H. Zidani, Optimal control problem governed by semilinear elliptic equations with integral control constraints and pointwise state constraints,, in, 126 (1998), 89.   Google Scholar

[19]

L. Cesari, "Optimization, Theory and Applications,", Springer-Verlag, (1983).   Google Scholar

[20]

V. Barbu, Optimal control of Navier-Stokes equations with periodic inputs,, Nonlinear Anal., 31 (1998), 15.  doi: 10.1016/S0362-546X(96)00306-9.  Google Scholar

[21]

X. J. Li and J. Yong, Necessary conditions for optimal control of distributed parameter systems,, SIAM J. Control Optim., 29 (1991), 895.  doi: 10.1137/0329049.  Google Scholar

show all references

References:
[1]

R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis,", 2nd edition, (1979).   Google Scholar

[2]

X. Li and J. Yong, "Optimal Control Theory for Infinite, Dimensional System, (1995).   Google Scholar

[3]

G. Wang, Pontryagin maximum principle of optimal control governed by fluid dynamic systems with two point boundary state constraint,, Nonlinear Anal., 51 (2002), 509.  doi: 10.1016/S0362-546X(01)00843-4.  Google Scholar

[4]

G. Wang and L. Wang, Maximum principle of state-constrained optimal control governed by fluid dynamic systems,, Nonlinear Anal., 52 (2003), 1911.  doi: 10.1016/S0362-546X(02)00282-1.  Google Scholar

[5]

H. Liu, Optimal control problems with state constraint governed by Navier-Stokes equations,, Nonlinear Anal., 73 (2010), 3924.  doi: 10.1016/j.na.2010.08.026.  Google Scholar

[6]

G. Wang, Optimal controls of 3-dimensional Navier-Stokes equations with state constraints,, SIAM J. Control Optim., 41 (2002), 583.  doi: 10.1137/S0363012901385769.  Google Scholar

[7]

E. Casas, J.-P. Raymond and H. Zidani, Pontryagin's principle for local solutions of control problems with mixed control-state constraints,, SIAM J. Control Optim., 39 (2000), 1182.   Google Scholar

[8]

J.-P. Raymond and H. Zidani, Pontryagin's principles for state-constrained control problems governed by semilinear parabolic equations with unbounded controls,, SIAM J. Control Optim., 36 (1998), 1853.   Google Scholar

[9]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: A survey,, Math. Control Relat. Fields, 1 (2011), 267.  doi: 10.3934/mcrf.2011.1.267.  Google Scholar

[10]

S. W. Hansen and O. Yu Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions,, Math. Control Relat. Fields, 1 (2011), 189.  doi: 10.3934/mcrf.2011.1.189.  Google Scholar

[11]

V. Barbu, The time optimal control of Navier-Stokes equations,, Systems Control Lett., 30 (1997), 93.  doi: 10.1016/S0167-6911(96)00083-7.  Google Scholar

[12]

L. Baudouin, E. Crépeau and J. Valein, Global Carleman estimate on a network for the wave equation and application to an inverse problem,, Math. Control Relat. Fields, 1 (2011), 307.  doi: 10.3934/mcrf.2011.1.307.  Google Scholar

[13]

I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. Part I: $H^1(\Omega)$-estimates,, J. Inv. Ill-Posed Problems, 12 (2004), 43.   Google Scholar

[14]

M. Badra, Global Carleman inequalities for Stokes and penalized Stokes equations,, Math. Control Relat. Fields, 1 (2011), 149.  doi: 10.3934/mcrf.2011.1.149.  Google Scholar

[15]

S. Ervedoza and E. Zuazua, Observability of heat processes by transmutation without geometric restrictions,, Math. Control Relat. Fields, 1 (2011), 177.  doi: 10.3934/mcrf.2011.1.177.  Google Scholar

[16]

R. Temam, "Navier-Stokes Equations and Nonlinear Functional Analysis,", CBMS-NSF Regional Conference Series in Applied Mathematics, (1983).   Google Scholar

[17]

H. O. Fattorini and S. Sritharan, Necessary and sufficient conditions for optimal controls in viscous flow problems,, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 211.  doi: 10.1017/S0308210500028444.  Google Scholar

[18]

E. Casas, J.-P. Raymond and H. Zidani, Optimal control problem governed by semilinear elliptic equations with integral control constraints and pointwise state constraints,, in, 126 (1998), 89.   Google Scholar

[19]

L. Cesari, "Optimization, Theory and Applications,", Springer-Verlag, (1983).   Google Scholar

[20]

V. Barbu, Optimal control of Navier-Stokes equations with periodic inputs,, Nonlinear Anal., 31 (1998), 15.  doi: 10.1016/S0362-546X(96)00306-9.  Google Scholar

[21]

X. J. Li and J. Yong, Necessary conditions for optimal control of distributed parameter systems,, SIAM J. Control Optim., 29 (1991), 895.  doi: 10.1137/0329049.  Google Scholar

[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[2]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[3]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[4]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[5]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[6]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[7]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[8]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[9]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[10]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[11]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[12]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

[13]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[14]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[15]

Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, 2021, 17 (1) : 447-465. doi: 10.3934/jimo.2019120

[16]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[17]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[18]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[19]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[20]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]