• Previous Article
    Optimal trend-following trading rules under a three-state regime switching model
  • MCRF Home
  • This Issue
  • Next Article
    Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms
March  2012, 2(1): 61-80. doi: 10.3934/mcrf.2012.2.61

Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints

1. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China, China

Received  June 2011 Revised  November 2011 Published  January 2012

This paper deals with the Pontryagin's principle of optimal control problems governed by the 2D Navier-Stokes equations with integral state constraints and coupled integral control--state constraints. As an application, the necessary conditions for the local solution in the sense of $L^r(0,T;L^2(\Omega))$ ($2 < r < \infty$) are also obtained.
Citation: Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control and Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61
References:
[1]

R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis," 2nd edition, North-Holland, Amsterdam, 1979.

[2]

X. Li and J. Yong, "Optimal Control Theory for Infinite Dimensional System," Birkhäuser, Boston, 1995.

[3]

G. Wang, Pontryagin maximum principle of optimal control governed by fluid dynamic systems with two point boundary state constraint, Nonlinear Anal., 51 (2002), 509-536. doi: 10.1016/S0362-546X(01)00843-4.

[4]

G. Wang and L. Wang, Maximum principle of state-constrained optimal control governed by fluid dynamic systems, Nonlinear Anal., 52 (2003), 1911-1931. doi: 10.1016/S0362-546X(02)00282-1.

[5]

H. Liu, Optimal control problems with state constraint governed by Navier-Stokes equations, Nonlinear Anal., 73 (2010), 3924-3939. doi: 10.1016/j.na.2010.08.026.

[6]

G. Wang, Optimal controls of 3-dimensional Navier-Stokes equations with state constraints, SIAM J. Control Optim., 41 (2002), 583-606. doi: 10.1137/S0363012901385769.

[7]

E. Casas, J.-P. Raymond and H. Zidani, Pontryagin's principle for local solutions of control problems with mixed control-state constraints, SIAM J. Control Optim., 39 (2000), 1182-1203.

[8]

J.-P. Raymond and H. Zidani, Pontryagin's principles for state-constrained control problems governed by semilinear parabolic equations with unbounded controls, SIAM J. Control Optim., 36 (1998), 1853-1879.

[9]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: A survey, Math. Control Relat. Fields, 1 (2011), 267-306. doi: 10.3934/mcrf.2011.1.267.

[10]

S. W. Hansen and O. Yu Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions, Math. Control Relat. Fields, 1 (2011), 189-230. doi: 10.3934/mcrf.2011.1.189.

[11]

V. Barbu, The time optimal control of Navier-Stokes equations, Systems Control Lett., 30 (1997), 93-100. doi: 10.1016/S0167-6911(96)00083-7.

[12]

L. Baudouin, E. Crépeau and J. Valein, Global Carleman estimate on a network for the wave equation and application to an inverse problem, Math. Control Relat. Fields, 1 (2011), 307-330. doi: 10.3934/mcrf.2011.1.307.

[13]

I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. Part I: $H^1(\Omega)$-estimates, J. Inv. Ill-Posed Problems, 12 (2004), 43-123; Part II: $L_2(\Omega)$-estimates, J. Inv. Ill-Posed Problems, 12 (2004), 183-231, (MR2061430).

[14]

M. Badra, Global Carleman inequalities for Stokes and penalized Stokes equations, Math. Control Relat. Fields, 1 (2011), 149-175. doi: 10.3934/mcrf.2011.1.149.

[15]

S. Ervedoza and E. Zuazua, Observability of heat processes by transmutation without geometric restrictions, Math. Control Relat. Fields, 1 (2011), 177-187. doi: 10.3934/mcrf.2011.1.177.

[16]

R. Temam, "Navier-Stokes Equations and Nonlinear Functional Analysis," CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1983.

[17]

H. O. Fattorini and S. Sritharan, Necessary and sufficient conditions for optimal controls in viscous flow problems, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 211-251. doi: 10.1017/S0308210500028444.

[18]

E. Casas, J.-P. Raymond and H. Zidani, Optimal control problem governed by semilinear elliptic equations with integral control constraints and pointwise state constraints, in "Control and Estimation of Distributed Parameter Systems" (Vorau, 1996), Internat. Ser. Numer. Math., 126, Birkhäuser, Basel, (1998), 89-102.

[19]

L. Cesari, "Optimization, Theory and Applications," Springer-Verlag, New York, 1983.

[20]

V. Barbu, Optimal control of Navier-Stokes equations with periodic inputs, Nonlinear Anal., 31 (1998), 15-31. doi: 10.1016/S0362-546X(96)00306-9.

[21]

X. J. Li and J. Yong, Necessary conditions for optimal control of distributed parameter systems, SIAM J. Control Optim., 29 (1991), 895-908. doi: 10.1137/0329049.

show all references

References:
[1]

R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis," 2nd edition, North-Holland, Amsterdam, 1979.

[2]

X. Li and J. Yong, "Optimal Control Theory for Infinite Dimensional System," Birkhäuser, Boston, 1995.

[3]

G. Wang, Pontryagin maximum principle of optimal control governed by fluid dynamic systems with two point boundary state constraint, Nonlinear Anal., 51 (2002), 509-536. doi: 10.1016/S0362-546X(01)00843-4.

[4]

G. Wang and L. Wang, Maximum principle of state-constrained optimal control governed by fluid dynamic systems, Nonlinear Anal., 52 (2003), 1911-1931. doi: 10.1016/S0362-546X(02)00282-1.

[5]

H. Liu, Optimal control problems with state constraint governed by Navier-Stokes equations, Nonlinear Anal., 73 (2010), 3924-3939. doi: 10.1016/j.na.2010.08.026.

[6]

G. Wang, Optimal controls of 3-dimensional Navier-Stokes equations with state constraints, SIAM J. Control Optim., 41 (2002), 583-606. doi: 10.1137/S0363012901385769.

[7]

E. Casas, J.-P. Raymond and H. Zidani, Pontryagin's principle for local solutions of control problems with mixed control-state constraints, SIAM J. Control Optim., 39 (2000), 1182-1203.

[8]

J.-P. Raymond and H. Zidani, Pontryagin's principles for state-constrained control problems governed by semilinear parabolic equations with unbounded controls, SIAM J. Control Optim., 36 (1998), 1853-1879.

[9]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: A survey, Math. Control Relat. Fields, 1 (2011), 267-306. doi: 10.3934/mcrf.2011.1.267.

[10]

S. W. Hansen and O. Yu Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions, Math. Control Relat. Fields, 1 (2011), 189-230. doi: 10.3934/mcrf.2011.1.189.

[11]

V. Barbu, The time optimal control of Navier-Stokes equations, Systems Control Lett., 30 (1997), 93-100. doi: 10.1016/S0167-6911(96)00083-7.

[12]

L. Baudouin, E. Crépeau and J. Valein, Global Carleman estimate on a network for the wave equation and application to an inverse problem, Math. Control Relat. Fields, 1 (2011), 307-330. doi: 10.3934/mcrf.2011.1.307.

[13]

I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. Part I: $H^1(\Omega)$-estimates, J. Inv. Ill-Posed Problems, 12 (2004), 43-123; Part II: $L_2(\Omega)$-estimates, J. Inv. Ill-Posed Problems, 12 (2004), 183-231, (MR2061430).

[14]

M. Badra, Global Carleman inequalities for Stokes and penalized Stokes equations, Math. Control Relat. Fields, 1 (2011), 149-175. doi: 10.3934/mcrf.2011.1.149.

[15]

S. Ervedoza and E. Zuazua, Observability of heat processes by transmutation without geometric restrictions, Math. Control Relat. Fields, 1 (2011), 177-187. doi: 10.3934/mcrf.2011.1.177.

[16]

R. Temam, "Navier-Stokes Equations and Nonlinear Functional Analysis," CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1983.

[17]

H. O. Fattorini and S. Sritharan, Necessary and sufficient conditions for optimal controls in viscous flow problems, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 211-251. doi: 10.1017/S0308210500028444.

[18]

E. Casas, J.-P. Raymond and H. Zidani, Optimal control problem governed by semilinear elliptic equations with integral control constraints and pointwise state constraints, in "Control and Estimation of Distributed Parameter Systems" (Vorau, 1996), Internat. Ser. Numer. Math., 126, Birkhäuser, Basel, (1998), 89-102.

[19]

L. Cesari, "Optimization, Theory and Applications," Springer-Verlag, New York, 1983.

[20]

V. Barbu, Optimal control of Navier-Stokes equations with periodic inputs, Nonlinear Anal., 31 (1998), 15-31. doi: 10.1016/S0362-546X(96)00306-9.

[21]

X. J. Li and J. Yong, Necessary conditions for optimal control of distributed parameter systems, SIAM J. Control Optim., 29 (1991), 895-908. doi: 10.1137/0329049.

[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations and Control Theory, 2022, 11 (2) : 347-371. doi: 10.3934/eect.2020110

[2]

Eduardo Casas, Fredi Tröltzsch. Sparse optimal control for the heat equation with mixed control-state constraints. Mathematical Control and Related Fields, 2020, 10 (3) : 471-491. doi: 10.3934/mcrf.2020007

[3]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[4]

Matthias Gerdts, Martin Kunkel. A nonsmooth Newton's method for discretized optimal control problems with state and control constraints. Journal of Industrial and Management Optimization, 2008, 4 (2) : 247-270. doi: 10.3934/jimo.2008.4.247

[5]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[6]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553

[7]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control and Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[8]

Yutaka Tsuzuki. Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains. Evolution Equations and Control Theory, 2014, 3 (1) : 191-206. doi: 10.3934/eect.2014.3.191

[9]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[10]

Matthias Gerdts, Martin Kunkel. Convergence analysis of Euler discretization of control-state constrained optimal control problems with controls of bounded variation. Journal of Industrial and Management Optimization, 2014, 10 (1) : 311-336. doi: 10.3934/jimo.2014.10.311

[11]

Piernicola Bettiol, Hélène Frankowska. Lipschitz regularity of solution map of control systems with multiple state constraints. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 1-26. doi: 10.3934/dcds.2012.32.1

[12]

Heinz Schättler, Urszula Ledzewicz, Helmut Maurer. Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2657-2679. doi: 10.3934/dcdsb.2014.19.2657

[13]

Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505

[14]

Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations and Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024

[15]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial and Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[16]

Piermarco Cannarsa, Hélène Frankowska, Elsa M. Marchini. On Bolza optimal control problems with constraints. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 629-653. doi: 10.3934/dcdsb.2009.11.629

[17]

Nguyen Hai Son. Solution stability to parametric distributed optimal control problems with finite unilateral constraints. Evolution Equations and Control Theory, 2022, 11 (4) : 1357-1372. doi: 10.3934/eect.2021047

[18]

Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579

[19]

M. Arisawa, P.-L. Lions. Continuity of admissible trajectories for state constraints control problems. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 297-305. doi: 10.3934/dcds.1996.2.297

[20]

Nidhal Gammoudi, Hasnaa Zidani. A differential game control problem with state constraints. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022008

2021 Impact Factor: 1.141

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]