• Previous Article
    Optimal trend-following trading rules under a three-state regime switching model
  • MCRF Home
  • This Issue
  • Next Article
    Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms
March  2012, 2(1): 61-80. doi: 10.3934/mcrf.2012.2.61

Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints

1. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China, China

Received  June 2011 Revised  November 2011 Published  January 2012

This paper deals with the Pontryagin's principle of optimal control problems governed by the 2D Navier-Stokes equations with integral state constraints and coupled integral control--state constraints. As an application, the necessary conditions for the local solution in the sense of $L^r(0,T;L^2(\Omega))$ ($2 < r < \infty$) are also obtained.
Citation: Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61
References:
[1]

R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis,", 2nd edition, (1979).   Google Scholar

[2]

X. Li and J. Yong, "Optimal Control Theory for Infinite, Dimensional System, (1995).   Google Scholar

[3]

G. Wang, Pontryagin maximum principle of optimal control governed by fluid dynamic systems with two point boundary state constraint,, Nonlinear Anal., 51 (2002), 509.  doi: 10.1016/S0362-546X(01)00843-4.  Google Scholar

[4]

G. Wang and L. Wang, Maximum principle of state-constrained optimal control governed by fluid dynamic systems,, Nonlinear Anal., 52 (2003), 1911.  doi: 10.1016/S0362-546X(02)00282-1.  Google Scholar

[5]

H. Liu, Optimal control problems with state constraint governed by Navier-Stokes equations,, Nonlinear Anal., 73 (2010), 3924.  doi: 10.1016/j.na.2010.08.026.  Google Scholar

[6]

G. Wang, Optimal controls of 3-dimensional Navier-Stokes equations with state constraints,, SIAM J. Control Optim., 41 (2002), 583.  doi: 10.1137/S0363012901385769.  Google Scholar

[7]

E. Casas, J.-P. Raymond and H. Zidani, Pontryagin's principle for local solutions of control problems with mixed control-state constraints,, SIAM J. Control Optim., 39 (2000), 1182.   Google Scholar

[8]

J.-P. Raymond and H. Zidani, Pontryagin's principles for state-constrained control problems governed by semilinear parabolic equations with unbounded controls,, SIAM J. Control Optim., 36 (1998), 1853.   Google Scholar

[9]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: A survey,, Math. Control Relat. Fields, 1 (2011), 267.  doi: 10.3934/mcrf.2011.1.267.  Google Scholar

[10]

S. W. Hansen and O. Yu Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions,, Math. Control Relat. Fields, 1 (2011), 189.  doi: 10.3934/mcrf.2011.1.189.  Google Scholar

[11]

V. Barbu, The time optimal control of Navier-Stokes equations,, Systems Control Lett., 30 (1997), 93.  doi: 10.1016/S0167-6911(96)00083-7.  Google Scholar

[12]

L. Baudouin, E. Crépeau and J. Valein, Global Carleman estimate on a network for the wave equation and application to an inverse problem,, Math. Control Relat. Fields, 1 (2011), 307.  doi: 10.3934/mcrf.2011.1.307.  Google Scholar

[13]

I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. Part I: $H^1(\Omega)$-estimates,, J. Inv. Ill-Posed Problems, 12 (2004), 43.   Google Scholar

[14]

M. Badra, Global Carleman inequalities for Stokes and penalized Stokes equations,, Math. Control Relat. Fields, 1 (2011), 149.  doi: 10.3934/mcrf.2011.1.149.  Google Scholar

[15]

S. Ervedoza and E. Zuazua, Observability of heat processes by transmutation without geometric restrictions,, Math. Control Relat. Fields, 1 (2011), 177.  doi: 10.3934/mcrf.2011.1.177.  Google Scholar

[16]

R. Temam, "Navier-Stokes Equations and Nonlinear Functional Analysis,", CBMS-NSF Regional Conference Series in Applied Mathematics, (1983).   Google Scholar

[17]

H. O. Fattorini and S. Sritharan, Necessary and sufficient conditions for optimal controls in viscous flow problems,, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 211.  doi: 10.1017/S0308210500028444.  Google Scholar

[18]

E. Casas, J.-P. Raymond and H. Zidani, Optimal control problem governed by semilinear elliptic equations with integral control constraints and pointwise state constraints,, in, 126 (1998), 89.   Google Scholar

[19]

L. Cesari, "Optimization, Theory and Applications,", Springer-Verlag, (1983).   Google Scholar

[20]

V. Barbu, Optimal control of Navier-Stokes equations with periodic inputs,, Nonlinear Anal., 31 (1998), 15.  doi: 10.1016/S0362-546X(96)00306-9.  Google Scholar

[21]

X. J. Li and J. Yong, Necessary conditions for optimal control of distributed parameter systems,, SIAM J. Control Optim., 29 (1991), 895.  doi: 10.1137/0329049.  Google Scholar

show all references

References:
[1]

R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis,", 2nd edition, (1979).   Google Scholar

[2]

X. Li and J. Yong, "Optimal Control Theory for Infinite, Dimensional System, (1995).   Google Scholar

[3]

G. Wang, Pontryagin maximum principle of optimal control governed by fluid dynamic systems with two point boundary state constraint,, Nonlinear Anal., 51 (2002), 509.  doi: 10.1016/S0362-546X(01)00843-4.  Google Scholar

[4]

G. Wang and L. Wang, Maximum principle of state-constrained optimal control governed by fluid dynamic systems,, Nonlinear Anal., 52 (2003), 1911.  doi: 10.1016/S0362-546X(02)00282-1.  Google Scholar

[5]

H. Liu, Optimal control problems with state constraint governed by Navier-Stokes equations,, Nonlinear Anal., 73 (2010), 3924.  doi: 10.1016/j.na.2010.08.026.  Google Scholar

[6]

G. Wang, Optimal controls of 3-dimensional Navier-Stokes equations with state constraints,, SIAM J. Control Optim., 41 (2002), 583.  doi: 10.1137/S0363012901385769.  Google Scholar

[7]

E. Casas, J.-P. Raymond and H. Zidani, Pontryagin's principle for local solutions of control problems with mixed control-state constraints,, SIAM J. Control Optim., 39 (2000), 1182.   Google Scholar

[8]

J.-P. Raymond and H. Zidani, Pontryagin's principles for state-constrained control problems governed by semilinear parabolic equations with unbounded controls,, SIAM J. Control Optim., 36 (1998), 1853.   Google Scholar

[9]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: A survey,, Math. Control Relat. Fields, 1 (2011), 267.  doi: 10.3934/mcrf.2011.1.267.  Google Scholar

[10]

S. W. Hansen and O. Yu Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions,, Math. Control Relat. Fields, 1 (2011), 189.  doi: 10.3934/mcrf.2011.1.189.  Google Scholar

[11]

V. Barbu, The time optimal control of Navier-Stokes equations,, Systems Control Lett., 30 (1997), 93.  doi: 10.1016/S0167-6911(96)00083-7.  Google Scholar

[12]

L. Baudouin, E. Crépeau and J. Valein, Global Carleman estimate on a network for the wave equation and application to an inverse problem,, Math. Control Relat. Fields, 1 (2011), 307.  doi: 10.3934/mcrf.2011.1.307.  Google Scholar

[13]

I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. Part I: $H^1(\Omega)$-estimates,, J. Inv. Ill-Posed Problems, 12 (2004), 43.   Google Scholar

[14]

M. Badra, Global Carleman inequalities for Stokes and penalized Stokes equations,, Math. Control Relat. Fields, 1 (2011), 149.  doi: 10.3934/mcrf.2011.1.149.  Google Scholar

[15]

S. Ervedoza and E. Zuazua, Observability of heat processes by transmutation without geometric restrictions,, Math. Control Relat. Fields, 1 (2011), 177.  doi: 10.3934/mcrf.2011.1.177.  Google Scholar

[16]

R. Temam, "Navier-Stokes Equations and Nonlinear Functional Analysis,", CBMS-NSF Regional Conference Series in Applied Mathematics, (1983).   Google Scholar

[17]

H. O. Fattorini and S. Sritharan, Necessary and sufficient conditions for optimal controls in viscous flow problems,, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 211.  doi: 10.1017/S0308210500028444.  Google Scholar

[18]

E. Casas, J.-P. Raymond and H. Zidani, Optimal control problem governed by semilinear elliptic equations with integral control constraints and pointwise state constraints,, in, 126 (1998), 89.   Google Scholar

[19]

L. Cesari, "Optimization, Theory and Applications,", Springer-Verlag, (1983).   Google Scholar

[20]

V. Barbu, Optimal control of Navier-Stokes equations with periodic inputs,, Nonlinear Anal., 31 (1998), 15.  doi: 10.1016/S0362-546X(96)00306-9.  Google Scholar

[21]

X. J. Li and J. Yong, Necessary conditions for optimal control of distributed parameter systems,, SIAM J. Control Optim., 29 (1991), 895.  doi: 10.1137/0329049.  Google Scholar

[1]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[2]

Matthias Gerdts, Martin Kunkel. A nonsmooth Newton's method for discretized optimal control problems with state and control constraints. Journal of Industrial & Management Optimization, 2008, 4 (2) : 247-270. doi: 10.3934/jimo.2008.4.247

[3]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553

[4]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[5]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control & Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[6]

Yutaka Tsuzuki. Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains. Evolution Equations & Control Theory, 2014, 3 (1) : 191-206. doi: 10.3934/eect.2014.3.191

[7]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[8]

Matthias Gerdts, Martin Kunkel. Convergence analysis of Euler discretization of control-state constrained optimal control problems with controls of bounded variation. Journal of Industrial & Management Optimization, 2014, 10 (1) : 311-336. doi: 10.3934/jimo.2014.10.311

[9]

Heinz Schättler, Urszula Ledzewicz, Helmut Maurer. Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2657-2679. doi: 10.3934/dcdsb.2014.19.2657

[10]

Piernicola Bettiol, Hélène Frankowska. Lipschitz regularity of solution map of control systems with multiple state constraints. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 1-26. doi: 10.3934/dcds.2012.32.1

[11]

Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505

[12]

Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations & Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024

[13]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[14]

Piermarco Cannarsa, Hélène Frankowska, Elsa M. Marchini. On Bolza optimal control problems with constraints. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 629-653. doi: 10.3934/dcdsb.2009.11.629

[15]

Kerem Uǧurlu. Continuity of cost functional and optimal feedback controls for the stochastic Navier Stokes equation in 2D. Communications on Pure & Applied Analysis, 2017, 16 (1) : 189-208. doi: 10.3934/cpaa.2017009

[16]

M. Arisawa, P.-L. Lions. Continuity of admissible trajectories for state constraints control problems. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 297-305. doi: 10.3934/dcds.1996.2.297

[17]

Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579

[18]

Yutaka Tsuzuki. Solvability of generalized nonlinear heat equations with constraints coupled with Navier--Stokes equations in 2D domains. Conference Publications, 2015, 2015 (special) : 1079-1088. doi: 10.3934/proc.2015.1079

[19]

Rafael Vázquez, Emmanuel Trélat, Jean-Michel Coron. Control for fast and stable Laminar-to-High-Reynolds-Numbers transfer in a 2D Navier-Stokes channel flow. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 925-956. doi: 10.3934/dcdsb.2008.10.925

[20]

J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]