-
Previous Article
Optimal trend-following trading rules under a three-state regime switching model
- MCRF Home
- This Issue
-
Next Article
Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms
Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints
1. | School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China, China |
References:
[1] |
2nd edition, North-Holland, Amsterdam, 1979. Google Scholar |
[2] |
Dimensional System," Birkhäuser, Boston, 1995. Google Scholar |
[3] |
Nonlinear Anal., 51 (2002), 509-536.
doi: 10.1016/S0362-546X(01)00843-4. |
[4] |
Nonlinear Anal., 52 (2003), 1911-1931.
doi: 10.1016/S0362-546X(02)00282-1. |
[5] |
Nonlinear Anal., 73 (2010), 3924-3939.
doi: 10.1016/j.na.2010.08.026. |
[6] |
SIAM J. Control Optim., 41 (2002), 583-606.
doi: 10.1137/S0363012901385769. |
[7] |
SIAM J. Control Optim., 39 (2000), 1182-1203. |
[8] |
SIAM J. Control Optim., 36 (1998), 1853-1879. Google Scholar |
[9] |
Math. Control Relat. Fields, 1 (2011), 267-306.
doi: 10.3934/mcrf.2011.1.267. |
[10] |
Math. Control Relat. Fields, 1 (2011), 189-230.
doi: 10.3934/mcrf.2011.1.189. |
[11] |
Systems Control Lett., 30 (1997), 93-100.
doi: 10.1016/S0167-6911(96)00083-7. |
[12] |
Math. Control Relat. Fields, 1 (2011), 307-330.
doi: 10.3934/mcrf.2011.1.307. |
[13] |
J. Inv. Ill-Posed Problems, 12 (2004), 43-123; Part II: $L_2(\Omega)$-estimates, J. Inv. Ill-Posed Problems, 12 (2004), 183-231, (MR2061430). |
[14] |
Math. Control Relat. Fields, 1 (2011), 149-175.
doi: 10.3934/mcrf.2011.1.149. |
[15] |
Math. Control Relat. Fields, 1 (2011), 177-187.
doi: 10.3934/mcrf.2011.1.177. |
[16] |
CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1983. Google Scholar |
[17] |
Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 211-251.
doi: 10.1017/S0308210500028444. |
[18] |
in "Control and Estimation of Distributed Parameter Systems" (Vorau, 1996), Internat. Ser. Numer. Math., 126, Birkhäuser, Basel, (1998), 89-102. |
[19] |
Springer-Verlag, New York, 1983. Google Scholar |
[20] |
Nonlinear Anal., 31 (1998), 15-31.
doi: 10.1016/S0362-546X(96)00306-9. |
[21] |
SIAM J. Control Optim., 29 (1991), 895-908.
doi: 10.1137/0329049. |
show all references
References:
[1] |
2nd edition, North-Holland, Amsterdam, 1979. Google Scholar |
[2] |
Dimensional System," Birkhäuser, Boston, 1995. Google Scholar |
[3] |
Nonlinear Anal., 51 (2002), 509-536.
doi: 10.1016/S0362-546X(01)00843-4. |
[4] |
Nonlinear Anal., 52 (2003), 1911-1931.
doi: 10.1016/S0362-546X(02)00282-1. |
[5] |
Nonlinear Anal., 73 (2010), 3924-3939.
doi: 10.1016/j.na.2010.08.026. |
[6] |
SIAM J. Control Optim., 41 (2002), 583-606.
doi: 10.1137/S0363012901385769. |
[7] |
SIAM J. Control Optim., 39 (2000), 1182-1203. |
[8] |
SIAM J. Control Optim., 36 (1998), 1853-1879. Google Scholar |
[9] |
Math. Control Relat. Fields, 1 (2011), 267-306.
doi: 10.3934/mcrf.2011.1.267. |
[10] |
Math. Control Relat. Fields, 1 (2011), 189-230.
doi: 10.3934/mcrf.2011.1.189. |
[11] |
Systems Control Lett., 30 (1997), 93-100.
doi: 10.1016/S0167-6911(96)00083-7. |
[12] |
Math. Control Relat. Fields, 1 (2011), 307-330.
doi: 10.3934/mcrf.2011.1.307. |
[13] |
J. Inv. Ill-Posed Problems, 12 (2004), 43-123; Part II: $L_2(\Omega)$-estimates, J. Inv. Ill-Posed Problems, 12 (2004), 183-231, (MR2061430). |
[14] |
Math. Control Relat. Fields, 1 (2011), 149-175.
doi: 10.3934/mcrf.2011.1.149. |
[15] |
Math. Control Relat. Fields, 1 (2011), 177-187.
doi: 10.3934/mcrf.2011.1.177. |
[16] |
CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1983. Google Scholar |
[17] |
Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 211-251.
doi: 10.1017/S0308210500028444. |
[18] |
in "Control and Estimation of Distributed Parameter Systems" (Vorau, 1996), Internat. Ser. Numer. Math., 126, Birkhäuser, Basel, (1998), 89-102. |
[19] |
Springer-Verlag, New York, 1983. Google Scholar |
[20] |
Nonlinear Anal., 31 (1998), 15-31.
doi: 10.1016/S0362-546X(96)00306-9. |
[21] |
SIAM J. Control Optim., 29 (1991), 895-908.
doi: 10.1137/0329049. |
[1] |
Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021012 |
[2] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408 |
[3] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[4] |
Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041 |
[5] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[6] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[7] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[8] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[9] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[10] |
Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021059 |
[11] |
Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021007 |
[12] |
Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215 |
[13] |
Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021013 |
[14] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[15] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[16] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[17] |
John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026 |
[18] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[19] |
Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021022 |
[20] |
Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021076 |
2019 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]