March  2012, 2(1): 81-100. doi: 10.3934/mcrf.2012.2.81

Optimal trend-following trading rules under a three-state regime switching model

1. 

Department of Mathematics and Actuarial Science, Roosevelt University, Chicago, IL 60605, United States

2. 

Department of Mathematics, University of Georgia, Athens, GA 30602

Received  November 2010 Revised  November 2011 Published  January 2012

Momentum (or trend-following) trading strategies are widely used in the investment world. To better understand the nature of trend-following trading strategies and discover the corresponding optimality conditions, we consider the cases when the market trends are fully observable. In this paper, the market follows a regime switching model with three states (bull, sideways, and bear). Under this model, a set of sufficient conditions are developed to guarantee the optimality of trend-following trading strategies. A dynamic programming approach is used to verify these optimality conditions. The value functions are characterized by the associated HJB equations and are shown to be either linear functions or infinity depending on the parameter values. The results in this paper will help an investor to identify market conditions and to avoid trades which might be unprofitable even under the best market information. Finally, the corresponding value functions will provide an upper bound for trading performance which can be used as a general guide to rule out unrealistic expectations.
Citation: Jie Yu, Qing Zhang. Optimal trend-following trading rules under a three-state regime switching model. Mathematical Control & Related Fields, 2012, 2 (1) : 81-100. doi: 10.3934/mcrf.2012.2.81
References:
[1]

N. P. B. Bollen, Valuing options in regime-switching models,, Journal of Derivatives, 6 (1998), 38.  doi: 10.3905/jod.1998.408011.  Google Scholar

[2]

J. Buffington and R. J. Elliott, American options with regime switching,, International Journal of Theoretical and Applied Finance, 5 (2002), 497.  doi: 10.1142/S0219024902001523.  Google Scholar

[3]

A. Cadenillas and S. R. Pliska, Optimal trading of a security when there are taxes and transaction costs,, Finance & Stochastics, 3 (1999), 137.  doi: 10.1007/s007800050055.  Google Scholar

[4]

G. M. Constantinides, Capital market equilibrium with personal tax,, Econometrica, 51 (1983), 611.  doi: 10.2307/1912150.  Google Scholar

[5]

M. Dai, Q. Zhang and Q. J. Zhu, Trend following trading under a regime switching model,, SIAM J. Financial Math, 1 (2010), 780.  doi: 10.1137/090770552.  Google Scholar

[6]

R. M. Dammon and C. S. Spatt, The optimal trading and pricing of securities with asymmetric capital gains taxes and transaction costs,, Rev. Financial Studies, 9 (1996), 921.  doi: 10.1093/rfs/9.3.921.  Google Scholar

[7]

R. J. Elliott, "Stochastic Calculus and Applications,", Springer-Verlag, (1982).   Google Scholar

[8]

X. Guo, "Inside Information and Stock Fluctuations,", Ph.D thesis, (1999).   Google Scholar

[9]

X. Guo and Q. Zhang, Optimal selling rules in a regime switching model,, IEEE Trans. Automatic Control, 50 (2005), 1450.  doi: 10.1109/TAC.2005.854657.  Google Scholar

[10]

J. D. Hamilton, A new approach to the economic analysis of non-stationary time series,, Econometrica, 57 (1989), 357.  doi: 10.2307/1912559.  Google Scholar

[11]

K. Helmes, Computing optimal selling rules for stocks using linear programming,, in, 351 (2004), 187.   Google Scholar

[12]

T. C. Johnson and M. Zervos, The optimal timing of investment decisions,, work in progress, (2006).   Google Scholar

[13]

I. Karatzas and S. E. Shreve, "Methods of Mathematical Finance,", Springer, (1998).   Google Scholar

[14]

H. T. Kong and Q. Zhang, An optimal trading rule of a mean-reverting asset,, Discrete and Continuous Dynamical System Series B, 14 (2010), 1403.  doi: 10.3934/dcdsb.2010.14.1403.  Google Scholar

[15]

H. T. Kong, Q. Zhang and G. Yin, A trend-following strategy: Conditions for optimality,, Automatica, 47 (2011), 661.  doi: 10.1016/j.automatica.2011.01.039.  Google Scholar

[16]

R. Liu, G. Yin and Q. Zhang, Option pricing in a regime switching model using the fast Fourier transform,, Applied Mathematics and Stochastic Analysis, 2006 (1810).   Google Scholar

[17]

A. Løkka and M. Zervos, Long-term optimal real investment strategies in the presence of adjustment costs,, work in progress, (2007).   Google Scholar

[18]

G. B. Di Masi, Y. M. Kabanov and W. J. Runggaldier, Mean variance hedging of options on stocks with Markov volatility,, Theory of Probability and Applications, 39 (1994), 173.  doi: 10.1137/1139008.  Google Scholar

[19]

A. Merhi and M. Zervos, A model for reversible investment capacity expansion,, SIAM J. Control Optim., 46 (2007), 839.  doi: 10.1137/050640758.  Google Scholar

[20]

B. Øksendal, "Stochastic Differential Equations,", 6th edition, (2003).   Google Scholar

[21]

D. D. Yao, Q. Zhang and X. Y. Zhou, A regime-switching model for European options,, in, 94 (2006), 281.   Google Scholar

[22]

G. Yin, R. H. Liu and Q. Zhang, Recursive algorithms for stock liquidation: A stochastic optimization approach,, SIAM J. Optim., 13 (2002), 240.  doi: 10.1137/S1052623401392901.  Google Scholar

[23]

G. Yin and C. Zhu, "Hybrid Switching Diffusions: Properties and Applications,", Springer, (2010).   Google Scholar

[24]

H. Zhang and Q. Zhang, Trading a mean-reverting asset: Buy low and sell high,, Automatica J. IFAC, 44 (2008), 1511.  doi: 10.1016/j.automatica.2007.11.003.  Google Scholar

[25]

Q. Zhang, Stock trading: An optimal selling rule,, SIAM J. Control Optim., 40 (2001), 64.  doi: 10.1137/S0363012999356325.  Google Scholar

[26]

Q. Zhang and G. Yin, Nearly optimal asset allocation in hybrid stock-investment models,, J. Optim. Theory Appl., 121 (2004), 419.  doi: 10.1023/B:JOTA.0000037412.23243.6c.  Google Scholar

[27]

X. Y. Zhou and G. Yin, Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model,, SIAM J. Control Optim., 42 (2003), 1466.  doi: 10.1137/S0363012902405583.  Google Scholar

show all references

References:
[1]

N. P. B. Bollen, Valuing options in regime-switching models,, Journal of Derivatives, 6 (1998), 38.  doi: 10.3905/jod.1998.408011.  Google Scholar

[2]

J. Buffington and R. J. Elliott, American options with regime switching,, International Journal of Theoretical and Applied Finance, 5 (2002), 497.  doi: 10.1142/S0219024902001523.  Google Scholar

[3]

A. Cadenillas and S. R. Pliska, Optimal trading of a security when there are taxes and transaction costs,, Finance & Stochastics, 3 (1999), 137.  doi: 10.1007/s007800050055.  Google Scholar

[4]

G. M. Constantinides, Capital market equilibrium with personal tax,, Econometrica, 51 (1983), 611.  doi: 10.2307/1912150.  Google Scholar

[5]

M. Dai, Q. Zhang and Q. J. Zhu, Trend following trading under a regime switching model,, SIAM J. Financial Math, 1 (2010), 780.  doi: 10.1137/090770552.  Google Scholar

[6]

R. M. Dammon and C. S. Spatt, The optimal trading and pricing of securities with asymmetric capital gains taxes and transaction costs,, Rev. Financial Studies, 9 (1996), 921.  doi: 10.1093/rfs/9.3.921.  Google Scholar

[7]

R. J. Elliott, "Stochastic Calculus and Applications,", Springer-Verlag, (1982).   Google Scholar

[8]

X. Guo, "Inside Information and Stock Fluctuations,", Ph.D thesis, (1999).   Google Scholar

[9]

X. Guo and Q. Zhang, Optimal selling rules in a regime switching model,, IEEE Trans. Automatic Control, 50 (2005), 1450.  doi: 10.1109/TAC.2005.854657.  Google Scholar

[10]

J. D. Hamilton, A new approach to the economic analysis of non-stationary time series,, Econometrica, 57 (1989), 357.  doi: 10.2307/1912559.  Google Scholar

[11]

K. Helmes, Computing optimal selling rules for stocks using linear programming,, in, 351 (2004), 187.   Google Scholar

[12]

T. C. Johnson and M. Zervos, The optimal timing of investment decisions,, work in progress, (2006).   Google Scholar

[13]

I. Karatzas and S. E. Shreve, "Methods of Mathematical Finance,", Springer, (1998).   Google Scholar

[14]

H. T. Kong and Q. Zhang, An optimal trading rule of a mean-reverting asset,, Discrete and Continuous Dynamical System Series B, 14 (2010), 1403.  doi: 10.3934/dcdsb.2010.14.1403.  Google Scholar

[15]

H. T. Kong, Q. Zhang and G. Yin, A trend-following strategy: Conditions for optimality,, Automatica, 47 (2011), 661.  doi: 10.1016/j.automatica.2011.01.039.  Google Scholar

[16]

R. Liu, G. Yin and Q. Zhang, Option pricing in a regime switching model using the fast Fourier transform,, Applied Mathematics and Stochastic Analysis, 2006 (1810).   Google Scholar

[17]

A. Løkka and M. Zervos, Long-term optimal real investment strategies in the presence of adjustment costs,, work in progress, (2007).   Google Scholar

[18]

G. B. Di Masi, Y. M. Kabanov and W. J. Runggaldier, Mean variance hedging of options on stocks with Markov volatility,, Theory of Probability and Applications, 39 (1994), 173.  doi: 10.1137/1139008.  Google Scholar

[19]

A. Merhi and M. Zervos, A model for reversible investment capacity expansion,, SIAM J. Control Optim., 46 (2007), 839.  doi: 10.1137/050640758.  Google Scholar

[20]

B. Øksendal, "Stochastic Differential Equations,", 6th edition, (2003).   Google Scholar

[21]

D. D. Yao, Q. Zhang and X. Y. Zhou, A regime-switching model for European options,, in, 94 (2006), 281.   Google Scholar

[22]

G. Yin, R. H. Liu and Q. Zhang, Recursive algorithms for stock liquidation: A stochastic optimization approach,, SIAM J. Optim., 13 (2002), 240.  doi: 10.1137/S1052623401392901.  Google Scholar

[23]

G. Yin and C. Zhu, "Hybrid Switching Diffusions: Properties and Applications,", Springer, (2010).   Google Scholar

[24]

H. Zhang and Q. Zhang, Trading a mean-reverting asset: Buy low and sell high,, Automatica J. IFAC, 44 (2008), 1511.  doi: 10.1016/j.automatica.2007.11.003.  Google Scholar

[25]

Q. Zhang, Stock trading: An optimal selling rule,, SIAM J. Control Optim., 40 (2001), 64.  doi: 10.1137/S0363012999356325.  Google Scholar

[26]

Q. Zhang and G. Yin, Nearly optimal asset allocation in hybrid stock-investment models,, J. Optim. Theory Appl., 121 (2004), 419.  doi: 10.1023/B:JOTA.0000037412.23243.6c.  Google Scholar

[27]

X. Y. Zhou and G. Yin, Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model,, SIAM J. Control Optim., 42 (2003), 1466.  doi: 10.1137/S0363012902405583.  Google Scholar

[1]

Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169

[2]

Ka Chun Cheung, Hailiang Yang. Optimal investment-consumption strategy in a discrete-time model with regime switching. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 315-332. doi: 10.3934/dcdsb.2007.8.315

[3]

Gilberto M. Kremer, Filipe Oliveira, Ana Jacinta Soares. $\mathcal H$-Theorem and trend to equilibrium of chemically reacting mixtures of gases. Kinetic & Related Models, 2009, 2 (2) : 333-343. doi: 10.3934/krm.2009.2.333

[4]

Dale McDonald. Sensitivity based trajectory following control damping methods. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 127-143. doi: 10.3934/naco.2013.3.127

[5]

Ka Wo Lau, Yue Kuen Kwok. Optimal execution strategy of liquidation. Journal of Industrial & Management Optimization, 2006, 2 (2) : 135-144. doi: 10.3934/jimo.2006.2.135

[6]

Andrew E.B. Lim, John B. Moore. A path following algorithm for infinite quadratic programming on a Hilbert space. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 653-670. doi: 10.3934/dcds.1998.4.653

[7]

Behrouz Kheirfam. A weighted-path-following method for symmetric cone linear complementarity problems. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 141-150. doi: 10.3934/naco.2014.4.141

[8]

Marte Godvik, Harald Hanche-Olsen. Car-following and the macroscopic Aw-Rascle traffic flow model. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 279-303. doi: 10.3934/dcdsb.2010.13.279

[9]

Alexander M. Krasnosel'skii, Edward O'Grady, Alexei Pokrovskii, Dmitrii I. Rachinskii. Periodic canard trajectories with multiple segments following the unstable part of critical manifold. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 467-482. doi: 10.3934/dcdsb.2013.18.467

[10]

Liming Sun, Li-Zhi Liao. An interior point continuous path-following trajectory for linear programming. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1517-1534. doi: 10.3934/jimo.2018107

[11]

Josselin Garnier. Ghost imaging in the random paraxial regime. Inverse Problems & Imaging, 2016, 10 (2) : 409-432. doi: 10.3934/ipi.2016006

[12]

Fengjun Wang, Qingling Zhang, Bin Li, Wanquan Liu. Optimal investment strategy on advertisement in duopoly. Journal of Industrial & Management Optimization, 2016, 12 (2) : 625-636. doi: 10.3934/jimo.2016.12.625

[13]

Liviana Palmisano. Unbounded regime for circle maps with a flat interval. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2099-2122. doi: 10.3934/dcds.2015.35.2099

[14]

Eugen Stumpf. On a delay differential equation arising from a car-following model: Wavefront solutions with constant-speed and their stability. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3317-3340. doi: 10.3934/dcdsb.2017139

[15]

Luigi Chierchia, Gabriella Pinzari. Properly-degenerate KAM theory (following V. I. Arnold). Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 545-578. doi: 10.3934/dcdss.2010.3.545

[16]

Xiangyu Gao, Yong Sun. A new heuristic algorithm for laser antimissile strategy optimization. Journal of Industrial & Management Optimization, 2012, 8 (2) : 457-468. doi: 10.3934/jimo.2012.8.457

[17]

Guibin Lu, Qiying Hu, Youying Zhou, Wuyi Yue. Optimal execution strategy with an endogenously determined sales period. Journal of Industrial & Management Optimization, 2005, 1 (3) : 289-304. doi: 10.3934/jimo.2005.1.289

[18]

Wai-Ki Ching, Tang Li, Sin-Man Choi, Issic K. C. Leung. A tandem queueing system with applications to pricing strategy. Journal of Industrial & Management Optimization, 2009, 5 (1) : 103-114. doi: 10.3934/jimo.2009.5.103

[19]

Sanyi Tang, Lansun Chen. Modelling and analysis of integrated pest management strategy. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 759-768. doi: 10.3934/dcdsb.2004.4.759

[20]

Shohel Ahmed, Abdul Alim, Sumaiya Rahman. A controlled treatment strategy applied to HIV immunology model. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 299-314. doi: 10.3934/naco.2018019

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]