Advanced Search
Article Contents
Article Contents

Compositions of passive boundary control systems

Abstract Related Papers Cited by
  • We show under mild assumptions that a composition of internally well-posed, impedance passive (or conservative) boundary control systems through Kirchhoff type connections is also an internally well-posed, impedance passive (resp., conservative) boundary control system. The proof is based on results of Malinen and Staffans [21]. We also present an example of such composition involving Webster's equation on a Y-shaped graph.
    Mathematics Subject Classification: Primary: 47A48; Secondary: 35R02, 47N70, 35L65.


    \begin{equation} \\ \end{equation}
  • [1]

    A. Aalto and J. Malinen, Wave propagation in networks: A system theoretic approach, in "Proceedings of the $18^{th}$ IFAC World Congress" (eds. S. Bittanti, A. Cenedese and S. Zampieri), (2011), 8854-8859.


    W. Arendt, C. Batty, M. Hieber and F. Neubrander, "Vector-valued Laplace Transforms and Cauchy Problems," Monographs in Mathematics, 96, Birkhäuser Verlag, Basel, 2001.


    J. Cervera, A. J. van der Schaft and A. Baños, Interconnection of port-Hamiltonian systems and composition of Dirac structures, Automatica J. of IFAC, 43 (2007), 212-225.doi: 10.1016/j.automatica.2006.08.014.


    R. F. Curtain and H. Zwart, "An Introduction to Infinite-Dimensional Linear Systems Theory," Texts in Applied Mathematics, 21, Springer-Verlag, New York, 1995.doi: 10.1007/978-1-4612-4224-6.


    V. Derkach, S. Hassi, M. Malamud and H. de Snoo, Boundary relations and their Weyl families, Transactions of the American Mathematical Society, 358 (2006), 5351-5400.doi: 10.1090/S0002-9947-06-04033-5.


    M. Gugat, G. Leugering, K. Schittkowski and E. J. P. Georg Schmidt, Modelling, stabilization, and control of flow in networks of open channels, in "Online Optimization of Large Scale Systems," Springer, Berlin, (2001), 251-270.


    K.-J. Engel, M. Kramar Fijavž, R. Nagel and E. Sikolya, Vertex control of flows in networks, Networks and Heterogeneous Media, 3 (2008), 709-722.doi: 10.3934/nhm.2008.3.709.


    H. Fattorini, Boundary control systems, SIAM Journal of Control, 6 (1968), 349-385.


    V. I. Gorbachuk and M. L. Gorbachuk, "Boundary Value Problems for Operator Differential Equations," Mathematics and its Applications (Soviet Series), 48, Kluwer Academic Publishers Group, Dordrecht, 1991.


    G. Greiner, Perturbing the boundary conditions of a generator, Houston Journal of Mathematics, 13 (1987), 213-229.


    A. Hannukainen, T. Lukkari, J. Malinen and P. Palo, Vowel formants from the wave equation, Journal of Acoustical Society of America Express Letters, 122 (2007).


    R. Hundhammer and G. Leugering, Instantaneous control of vibrating string networks, in "Online Optimization of Large Scale Systems," Springer, Berlin, (2001), 229-249.


    P. Kuchment and H. Zeng, Convergence of spectra of mesoscopic systems collapsing onto a graph, Journal of Mathematical Analysis and Applications, 258 (2001), 671-700.doi: 10.1006/jmaa.2000.7415.


    Mikael Kurula, "Towards Input/Output-Free Modelling of Linear Infinite-Dimensional Systems in Continuous Time," Ph.D thesis, Å bo Akademi, 2010.


    M. Kurula, H. Zwart, A. van der Schaft and J. Behrndt, Dirac structures and their composition on Hilbert spaces, Journal of Mathematical Analysis and Applications, 372 (2010), 402-422.doi: 10.1016/j.jmaa.2010.07.004.


    Y. Latushkin and V. Pivovarchik, Scattering in a forked-shaped waveguide, Integral Equations and Operator Theory, 61 (2008), 365-399.doi: 10.1007/s00020-008-1597-2.


    M. S. Livšic, "Operators, Oscillations, Waves (Open Systems)," Translations of Mathematical Monographs, Vol. 34, American Mathematical Society, Providence, Rhode Island, 1973.


    T. Lukkari and J. Malinen, Webster's equation with curvature and dissipation, preprint, arXiv:1204.4075, 2012.


    J. Malinen, Conservativivity of time-flow invertible and boundary control systems, Helsinki University of Technology Institute of Mathematics Research Reports, A479, (2004).


    J. Malinen and O. Staffans, Conservative boundary control systems, Journal of Differential Equations, 231 (2006), 290-312.doi: 10.1016/j.jde.2006.05.012.


    J. Malinen and O. Staffans, Impedance passive and conservative boundary control systems, Complex Analysis and Operator Theory, 1 (2007), 279-300.doi: 10.1007/s11785-006-0009-3.


    J. Malinen, O. Staffans and G. Weiss, When is a linear system conservative, Quarterly of Applied Mathematics, 64 (2006), 61-91.


    J. Rubinstein and M. Schatzman, Variational problems on multiply connected thin strips. I. Basic estimates and convergence of the Laplacian spectrum, Archive for Rational Mechanics and Analysis, 160 (2001), 271-308.doi: 10.1007/s002050100164.


    D. Salamon, Infinite-dimensional linear systems with unbounded control and observation: A functional analytic approach, Transactions of the American Mathematical Society, 300 (1987), 383-431.doi: 10.2307/2000351.


    D. Salamon, Realization theory in Hilbert space, Mathematical Systems Theory, 21 (1989), 147-164.doi: 10.1007/BF02088011.


    O. Staffans, "Well-Posed Linear Systems," Encyclopedia of Mathematics and its Applications, 103, Cambridge University Press, Cambridge, 2005.doi: 10.1017/CBO9780511543197.


    Javier Villegas, "A Port-Hamiltonian Approach to Distributed Parameter Systems," Ph.D thesis, University of Twente, 2007.


    G. Weiss, Regular linear systems with feedback, Mathematics of Control, Signals, and Systems, 7 (1994), 23-57.doi: 10.1007/BF01211484.


    G. Weiss and X. Zhao, Well-posedness and controllability of a class of coupled linear systems, SIAM Journal of Control and Optimization, 48 (2009), 2719-2750.doi: 10.1137/090752833.


    H. Zwart, Y. Le Gorrec, B. Maschke and J. Villegas, Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain, ESAIM: Control, Optimisation and Calculus of Variations, 16 (2010), 1077-1093.doi: 10.1051/cocv/2009036.

  • 加载中

Article Metrics

HTML views() PDF downloads(61) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint