March  2013, 3(1): 1-19. doi: 10.3934/mcrf.2013.3.1

Compositions of passive boundary control systems

1. 

Department of Mathematics and Systems Analysis, Aalto University School of Science, PB 11100, 00076-Aalto, Finland, Finland

Received  December 2011 Revised  May 2012 Published  February 2013

We show under mild assumptions that a composition of internally well-posed, impedance passive (or conservative) boundary control systems through Kirchhoff type connections is also an internally well-posed, impedance passive (resp., conservative) boundary control system. The proof is based on results of Malinen and Staffans [21]. We also present an example of such composition involving Webster's equation on a Y-shaped graph.
Citation: Atte Aalto, Jarmo Malinen. Compositions of passive boundary control systems. Mathematical Control & Related Fields, 2013, 3 (1) : 1-19. doi: 10.3934/mcrf.2013.3.1
References:
[1]

A. Aalto and J. Malinen, Wave propagation in networks: A system theoretic approach, in "Proceedings of the $18^{th}$ IFAC World Congress" (eds. S. Bittanti, A. Cenedese and S. Zampieri), (2011), 8854-8859. Google Scholar

[2]

W. Arendt, C. Batty, M. Hieber and F. Neubrander, "Vector-valued Laplace Transforms and Cauchy Problems," Monographs in Mathematics, 96, Birkhäuser Verlag, Basel, 2001.  Google Scholar

[3]

J. Cervera, A. J. van der Schaft and A. Baños, Interconnection of port-Hamiltonian systems and composition of Dirac structures, Automatica J. of IFAC, 43 (2007), 212-225. doi: 10.1016/j.automatica.2006.08.014.  Google Scholar

[4]

R. F. Curtain and H. Zwart, "An Introduction to Infinite-Dimensional Linear Systems Theory," Texts in Applied Mathematics, 21, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4224-6.  Google Scholar

[5]

V. Derkach, S. Hassi, M. Malamud and H. de Snoo, Boundary relations and their Weyl families, Transactions of the American Mathematical Society, 358 (2006), 5351-5400. doi: 10.1090/S0002-9947-06-04033-5.  Google Scholar

[6]

M. Gugat, G. Leugering, K. Schittkowski and E. J. P. Georg Schmidt, Modelling, stabilization, and control of flow in networks of open channels, in "Online Optimization of Large Scale Systems," Springer, Berlin, (2001), 251-270.  Google Scholar

[7]

K.-J. Engel, M. Kramar Fijavž, R. Nagel and E. Sikolya, Vertex control of flows in networks, Networks and Heterogeneous Media, 3 (2008), 709-722. doi: 10.3934/nhm.2008.3.709.  Google Scholar

[8]

H. Fattorini, Boundary control systems, SIAM Journal of Control, 6 (1968), 349-385.  Google Scholar

[9]

V. I. Gorbachuk and M. L. Gorbachuk, "Boundary Value Problems for Operator Differential Equations," Mathematics and its Applications (Soviet Series), 48, Kluwer Academic Publishers Group, Dordrecht, 1991.  Google Scholar

[10]

G. Greiner, Perturbing the boundary conditions of a generator, Houston Journal of Mathematics, 13 (1987), 213-229.  Google Scholar

[11]

A. Hannukainen, T. Lukkari, J. Malinen and P. Palo, Vowel formants from the wave equation, Journal of Acoustical Society of America Express Letters, 122 (2007). Google Scholar

[12]

R. Hundhammer and G. Leugering, Instantaneous control of vibrating string networks, in "Online Optimization of Large Scale Systems," Springer, Berlin, (2001), 229-249.  Google Scholar

[13]

P. Kuchment and H. Zeng, Convergence of spectra of mesoscopic systems collapsing onto a graph, Journal of Mathematical Analysis and Applications, 258 (2001), 671-700. doi: 10.1006/jmaa.2000.7415.  Google Scholar

[14]

Mikael Kurula, "Towards Input/Output-Free Modelling of Linear Infinite-Dimensional Systems in Continuous Time," Ph.D thesis, Å bo Akademi, 2010. Google Scholar

[15]

M. Kurula, H. Zwart, A. van der Schaft and J. Behrndt, Dirac structures and their composition on Hilbert spaces, Journal of Mathematical Analysis and Applications, 372 (2010), 402-422. doi: 10.1016/j.jmaa.2010.07.004.  Google Scholar

[16]

Y. Latushkin and V. Pivovarchik, Scattering in a forked-shaped waveguide, Integral Equations and Operator Theory, 61 (2008), 365-399. doi: 10.1007/s00020-008-1597-2.  Google Scholar

[17]

M. S. Livšic, "Operators, Oscillations, Waves (Open Systems)," Translations of Mathematical Monographs, Vol. 34, American Mathematical Society, Providence, Rhode Island, 1973.  Google Scholar

[18]

T. Lukkari and J. Malinen, Webster's equation with curvature and dissipation, preprint, arXiv:1204.4075, 2012. Google Scholar

[19]

J. Malinen, Conservativivity of time-flow invertible and boundary control systems, Helsinki University of Technology Institute of Mathematics Research Reports, A479, (2004). Google Scholar

[20]

J. Malinen and O. Staffans, Conservative boundary control systems, Journal of Differential Equations, 231 (2006), 290-312. doi: 10.1016/j.jde.2006.05.012.  Google Scholar

[21]

J. Malinen and O. Staffans, Impedance passive and conservative boundary control systems, Complex Analysis and Operator Theory, 1 (2007), 279-300. doi: 10.1007/s11785-006-0009-3.  Google Scholar

[22]

J. Malinen, O. Staffans and G. Weiss, When is a linear system conservative, Quarterly of Applied Mathematics, 64 (2006), 61-91.  Google Scholar

[23]

J. Rubinstein and M. Schatzman, Variational problems on multiply connected thin strips. I. Basic estimates and convergence of the Laplacian spectrum, Archive for Rational Mechanics and Analysis, 160 (2001), 271-308. doi: 10.1007/s002050100164.  Google Scholar

[24]

D. Salamon, Infinite-dimensional linear systems with unbounded control and observation: A functional analytic approach, Transactions of the American Mathematical Society, 300 (1987), 383-431. doi: 10.2307/2000351.  Google Scholar

[25]

D. Salamon, Realization theory in Hilbert space, Mathematical Systems Theory, 21 (1989), 147-164. doi: 10.1007/BF02088011.  Google Scholar

[26]

O. Staffans, "Well-Posed Linear Systems," Encyclopedia of Mathematics and its Applications, 103, Cambridge University Press, Cambridge, 2005. doi: 10.1017/CBO9780511543197.  Google Scholar

[27]

Javier Villegas, "A Port-Hamiltonian Approach to Distributed Parameter Systems," Ph.D thesis, University of Twente, 2007. Google Scholar

[28]

G. Weiss, Regular linear systems with feedback, Mathematics of Control, Signals, and Systems, 7 (1994), 23-57. doi: 10.1007/BF01211484.  Google Scholar

[29]

G. Weiss and X. Zhao, Well-posedness and controllability of a class of coupled linear systems, SIAM Journal of Control and Optimization, 48 (2009), 2719-2750. doi: 10.1137/090752833.  Google Scholar

[30]

H. Zwart, Y. Le Gorrec, B. Maschke and J. Villegas, Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain, ESAIM: Control, Optimisation and Calculus of Variations, 16 (2010), 1077-1093. doi: 10.1051/cocv/2009036.  Google Scholar

show all references

References:
[1]

A. Aalto and J. Malinen, Wave propagation in networks: A system theoretic approach, in "Proceedings of the $18^{th}$ IFAC World Congress" (eds. S. Bittanti, A. Cenedese and S. Zampieri), (2011), 8854-8859. Google Scholar

[2]

W. Arendt, C. Batty, M. Hieber and F. Neubrander, "Vector-valued Laplace Transforms and Cauchy Problems," Monographs in Mathematics, 96, Birkhäuser Verlag, Basel, 2001.  Google Scholar

[3]

J. Cervera, A. J. van der Schaft and A. Baños, Interconnection of port-Hamiltonian systems and composition of Dirac structures, Automatica J. of IFAC, 43 (2007), 212-225. doi: 10.1016/j.automatica.2006.08.014.  Google Scholar

[4]

R. F. Curtain and H. Zwart, "An Introduction to Infinite-Dimensional Linear Systems Theory," Texts in Applied Mathematics, 21, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4224-6.  Google Scholar

[5]

V. Derkach, S. Hassi, M. Malamud and H. de Snoo, Boundary relations and their Weyl families, Transactions of the American Mathematical Society, 358 (2006), 5351-5400. doi: 10.1090/S0002-9947-06-04033-5.  Google Scholar

[6]

M. Gugat, G. Leugering, K. Schittkowski and E. J. P. Georg Schmidt, Modelling, stabilization, and control of flow in networks of open channels, in "Online Optimization of Large Scale Systems," Springer, Berlin, (2001), 251-270.  Google Scholar

[7]

K.-J. Engel, M. Kramar Fijavž, R. Nagel and E. Sikolya, Vertex control of flows in networks, Networks and Heterogeneous Media, 3 (2008), 709-722. doi: 10.3934/nhm.2008.3.709.  Google Scholar

[8]

H. Fattorini, Boundary control systems, SIAM Journal of Control, 6 (1968), 349-385.  Google Scholar

[9]

V. I. Gorbachuk and M. L. Gorbachuk, "Boundary Value Problems for Operator Differential Equations," Mathematics and its Applications (Soviet Series), 48, Kluwer Academic Publishers Group, Dordrecht, 1991.  Google Scholar

[10]

G. Greiner, Perturbing the boundary conditions of a generator, Houston Journal of Mathematics, 13 (1987), 213-229.  Google Scholar

[11]

A. Hannukainen, T. Lukkari, J. Malinen and P. Palo, Vowel formants from the wave equation, Journal of Acoustical Society of America Express Letters, 122 (2007). Google Scholar

[12]

R. Hundhammer and G. Leugering, Instantaneous control of vibrating string networks, in "Online Optimization of Large Scale Systems," Springer, Berlin, (2001), 229-249.  Google Scholar

[13]

P. Kuchment and H. Zeng, Convergence of spectra of mesoscopic systems collapsing onto a graph, Journal of Mathematical Analysis and Applications, 258 (2001), 671-700. doi: 10.1006/jmaa.2000.7415.  Google Scholar

[14]

Mikael Kurula, "Towards Input/Output-Free Modelling of Linear Infinite-Dimensional Systems in Continuous Time," Ph.D thesis, Å bo Akademi, 2010. Google Scholar

[15]

M. Kurula, H. Zwart, A. van der Schaft and J. Behrndt, Dirac structures and their composition on Hilbert spaces, Journal of Mathematical Analysis and Applications, 372 (2010), 402-422. doi: 10.1016/j.jmaa.2010.07.004.  Google Scholar

[16]

Y. Latushkin and V. Pivovarchik, Scattering in a forked-shaped waveguide, Integral Equations and Operator Theory, 61 (2008), 365-399. doi: 10.1007/s00020-008-1597-2.  Google Scholar

[17]

M. S. Livšic, "Operators, Oscillations, Waves (Open Systems)," Translations of Mathematical Monographs, Vol. 34, American Mathematical Society, Providence, Rhode Island, 1973.  Google Scholar

[18]

T. Lukkari and J. Malinen, Webster's equation with curvature and dissipation, preprint, arXiv:1204.4075, 2012. Google Scholar

[19]

J. Malinen, Conservativivity of time-flow invertible and boundary control systems, Helsinki University of Technology Institute of Mathematics Research Reports, A479, (2004). Google Scholar

[20]

J. Malinen and O. Staffans, Conservative boundary control systems, Journal of Differential Equations, 231 (2006), 290-312. doi: 10.1016/j.jde.2006.05.012.  Google Scholar

[21]

J. Malinen and O. Staffans, Impedance passive and conservative boundary control systems, Complex Analysis and Operator Theory, 1 (2007), 279-300. doi: 10.1007/s11785-006-0009-3.  Google Scholar

[22]

J. Malinen, O. Staffans and G. Weiss, When is a linear system conservative, Quarterly of Applied Mathematics, 64 (2006), 61-91.  Google Scholar

[23]

J. Rubinstein and M. Schatzman, Variational problems on multiply connected thin strips. I. Basic estimates and convergence of the Laplacian spectrum, Archive for Rational Mechanics and Analysis, 160 (2001), 271-308. doi: 10.1007/s002050100164.  Google Scholar

[24]

D. Salamon, Infinite-dimensional linear systems with unbounded control and observation: A functional analytic approach, Transactions of the American Mathematical Society, 300 (1987), 383-431. doi: 10.2307/2000351.  Google Scholar

[25]

D. Salamon, Realization theory in Hilbert space, Mathematical Systems Theory, 21 (1989), 147-164. doi: 10.1007/BF02088011.  Google Scholar

[26]

O. Staffans, "Well-Posed Linear Systems," Encyclopedia of Mathematics and its Applications, 103, Cambridge University Press, Cambridge, 2005. doi: 10.1017/CBO9780511543197.  Google Scholar

[27]

Javier Villegas, "A Port-Hamiltonian Approach to Distributed Parameter Systems," Ph.D thesis, University of Twente, 2007. Google Scholar

[28]

G. Weiss, Regular linear systems with feedback, Mathematics of Control, Signals, and Systems, 7 (1994), 23-57. doi: 10.1007/BF01211484.  Google Scholar

[29]

G. Weiss and X. Zhao, Well-posedness and controllability of a class of coupled linear systems, SIAM Journal of Control and Optimization, 48 (2009), 2719-2750. doi: 10.1137/090752833.  Google Scholar

[30]

H. Zwart, Y. Le Gorrec, B. Maschke and J. Villegas, Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain, ESAIM: Control, Optimisation and Calculus of Variations, 16 (2010), 1077-1093. doi: 10.1051/cocv/2009036.  Google Scholar

[1]

Shinya Kinoshita. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in 2D. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1479-1504. doi: 10.3934/dcds.2018061

[2]

Isao Kato. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2247-2280. doi: 10.3934/cpaa.2016036

[3]

Birgit Jacob, Hafida Laasri. Well-posedness of infinite-dimensional non-autonomous passive boundary control systems. Evolution Equations & Control Theory, 2021, 10 (2) : 385-409. doi: 10.3934/eect.2020072

[4]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[5]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[6]

Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259

[7]

Gustavo Ponce, Jean-Claude Saut. Well-posedness for the Benney-Roskes/Zakharov- Rubenchik system. Discrete & Continuous Dynamical Systems, 2005, 13 (3) : 811-825. doi: 10.3934/dcds.2005.13.811

[8]

Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126

[9]

Manas Bhatnagar, Hailiang Liu. Well-posedness and critical thresholds in a nonlocal Euler system with relaxation. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021076

[10]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[11]

Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete & Continuous Dynamical Systems, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181

[12]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[13]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[14]

Junxiong Jia, Jigen Peng, Kexue Li. Well-posedness of abstract distributed-order fractional diffusion equations. Communications on Pure & Applied Analysis, 2014, 13 (2) : 605-621. doi: 10.3934/cpaa.2014.13.605

[15]

Kareem T. Elgindy. Optimal control of a parabolic distributed parameter system using a fully exponentially convergent barycentric shifted gegenbauer integral pseudospectral method. Journal of Industrial & Management Optimization, 2018, 14 (2) : 473-496. doi: 10.3934/jimo.2017056

[16]

Xin Zhong. Global well-posedness to the cauchy problem of two-dimensional density-dependent boussinesq equations with large initial data and vacuum. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6713-6745. doi: 10.3934/dcds.2019292

[17]

Mircea Sofonea, Yi-bin Xiao. Tykhonov well-posedness of a viscoplastic contact problem. Evolution Equations & Control Theory, 2020, 9 (4) : 1167-1185. doi: 10.3934/eect.2020048

[18]

Fujun Zhou, Shangbin Cui. Well-posedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord. Discrete & Continuous Dynamical Systems, 2008, 21 (3) : 929-943. doi: 10.3934/dcds.2008.21.929

[19]

Joachim Escher, Anca-Voichita Matioc. Well-posedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 573-596. doi: 10.3934/dcdsb.2011.15.573

[20]

Qiao Liu, Ting Zhang, Jihong Zhao. Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 371-402. doi: 10.3934/dcds.2016.36.371

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]