-
Previous Article
Stability of the determination of a time-dependent coefficient in parabolic equations
- MCRF Home
- This Issue
- Next Article
Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws
1. | Applied Mathematics Division, University of Stellenbosch, Stellenbosch 7600, South Africa |
2. | RWTH Aachen University, IGPM, Templergraben 55, 52056 Aachen, Germany |
References:
[1] |
M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Networks and Heterogenous Media, 1 (2006), 41-56.
doi: 10.3934/nhm.2006.1.41. |
[2] |
G. Bastin, B. Haut, J.-M. Coron and B. D'andréa-Novel, Lyapunov stability analysis of networks of scalar conservation laws, Netw. Heterog. Media, 2 (2007), 751-759.
doi: 10.3934/nhm.2007.2.751. |
[3] |
M. Cirinà, Boundary controllability of nonlinear hyperbolic systems, SIAM J. Control, 7 (1969), 198-212. |
[4] |
J.-M. Coron, Local controllability of a 1-D tank containing a fluid modelled by the shallow water equations, ESAIM:COCV, 8 (2002), 513-554.
doi: 10.1051/cocv:2002050. |
[5] |
J.-M. Coron, "Control and Nonlinearity," Mathematical Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007. |
[6] |
J.-M. Coron, G. Bastin and B. d'Andréa-Novel, Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems, SIAM J. Control. Optim., 47 (2008), 1460-1498.
doi: 10.1137/070706847. |
[7] |
J. M. Coron, B. d'Andréa-Novel and G. Bastin, A Lyapunov approach to control irrigation canals modeled by Saint-Venant equations, in CD-ROM Proceedings of ECC Karlsruhe, (1999). |
[8] |
J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Trans. Automat. Control, 52 (2007), 2-11.
doi: 10.1109/TAC.2006.887903. |
[9] |
J. de Halleux, C. Prieur, J.-M. Coron, B. d'Andréa-Novel and G. Bastin, Boundary feedback control in networks of open channels, Automatica J. IFAC, 39 (2003), 1365-1376.
doi: 10.1016/S0005-1098(03)00109-2. |
[10] |
J. M. Greenberg and T. T. Li, The effect of boundary damping for the quasilinear wave equation, J. Differential Equations, 52 (1984), 66-75.
doi: 10.1016/0022-0396(84)90135-9. |
[11] |
M. Gugat, Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives, AMO Advanced Modeling and Optimization, 7 (2005), 9-37. |
[12] |
M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks, ESAIM: Control, Optimisation and Calculus of Variations, 17 (2011), 28-51.
doi: 10.1051/cocv/2009035. |
[13] |
M. Gugat and G. Leugering, Global boundary controllability of the St. Venant equations between steady states, Annales de l'Institut Henri Poincaré, Nonlinear Analysis, 20 (2003), 1-11.
doi: 10.1016/S0294-1449(02)00004-5. |
[14] |
M. Gugat, G. Leugering and E. Schmidt, Global controllability between steady supercritical flows in channel networks, Mathematical Methods in the Applied Sciences, 27 (2004), 781-802.
doi: 10.1002/mma.471. |
[15] |
G. Leugering and E. J. P. G. Schmidt, On the modelling and stabilization of flows in networks of open canals, SIAM J. Control Optim., 41 (2002), 164-180.
doi: 10.1137/S0363012900375664. |
[16] |
T. Li, Modelling traffic flow with a time-dependent fundamental diagram, Math. Meth. Appl. Sci., 27 (2004), 583-601.
doi: 10.1002/mma.470. |
[17] |
T. Li and B. Rao, Exact controllability for first order quasilinear hyperbolic systems with vertical characteristics, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 980-990.
doi: 10.1016/S0252-9602(09)60089-8. |
[18] |
T. Li, B. Rao and Z. Wang, Contrôlabilité observabilité unilatérales de systèmes hyperboliques quasi-linéaires, C. R. Math. Acad. Sci. Paris, 346 (2008), 1067-1072.
doi: 10.1016/j.crma.2008.09.004. |
[19] |
T. Li and L. Yu, Exact controllability for first order quasilinear hyperbolic systems with zero eigenvalues, Chinese Ann. Math. Ser. B, 24 (2003), 415-422.
doi: 10.1142/S0252959903000414. |
[20] |
T. T. Li, Exact controllability of quasilinear hyperbolic equations (or systems), Appl. Math. J. Chinese Univ. Ser. A, 20 (2005), 127-146. |
[21] |
M. Slemrod, Boundary feedback stabilization for a quasilinear wave equation, in "Control Theory for Distributed Parameter Systems and Applications" (Vorau, 1982), Lecture Notes in Control and Information Sciences, 54, Springer, Berlin, (1983), 221-237.
doi: 10.1007/BFb0043951. |
[22] |
C.-Z. Xu and G. Sallet, Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems, ESAIM Control Optim. Calc. Var., 7 (2002), 421-442 (electronic).
doi: 10.1051/cocv:2002062. |
[23] |
E. Zuazua, Controllability of partial differential equations: Some results and open problems, in "Handbook of Differential Equations: Evolutionary Equations. Vol. III" (eds. C. Dafermos and E. Feireisl), Elsevier/North-Holland, Amsterdam, (2007), 527-621.
doi: 10.1016/S1874-5717(07)80010-7. |
show all references
References:
[1] |
M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Networks and Heterogenous Media, 1 (2006), 41-56.
doi: 10.3934/nhm.2006.1.41. |
[2] |
G. Bastin, B. Haut, J.-M. Coron and B. D'andréa-Novel, Lyapunov stability analysis of networks of scalar conservation laws, Netw. Heterog. Media, 2 (2007), 751-759.
doi: 10.3934/nhm.2007.2.751. |
[3] |
M. Cirinà, Boundary controllability of nonlinear hyperbolic systems, SIAM J. Control, 7 (1969), 198-212. |
[4] |
J.-M. Coron, Local controllability of a 1-D tank containing a fluid modelled by the shallow water equations, ESAIM:COCV, 8 (2002), 513-554.
doi: 10.1051/cocv:2002050. |
[5] |
J.-M. Coron, "Control and Nonlinearity," Mathematical Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007. |
[6] |
J.-M. Coron, G. Bastin and B. d'Andréa-Novel, Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems, SIAM J. Control. Optim., 47 (2008), 1460-1498.
doi: 10.1137/070706847. |
[7] |
J. M. Coron, B. d'Andréa-Novel and G. Bastin, A Lyapunov approach to control irrigation canals modeled by Saint-Venant equations, in CD-ROM Proceedings of ECC Karlsruhe, (1999). |
[8] |
J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Trans. Automat. Control, 52 (2007), 2-11.
doi: 10.1109/TAC.2006.887903. |
[9] |
J. de Halleux, C. Prieur, J.-M. Coron, B. d'Andréa-Novel and G. Bastin, Boundary feedback control in networks of open channels, Automatica J. IFAC, 39 (2003), 1365-1376.
doi: 10.1016/S0005-1098(03)00109-2. |
[10] |
J. M. Greenberg and T. T. Li, The effect of boundary damping for the quasilinear wave equation, J. Differential Equations, 52 (1984), 66-75.
doi: 10.1016/0022-0396(84)90135-9. |
[11] |
M. Gugat, Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives, AMO Advanced Modeling and Optimization, 7 (2005), 9-37. |
[12] |
M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks, ESAIM: Control, Optimisation and Calculus of Variations, 17 (2011), 28-51.
doi: 10.1051/cocv/2009035. |
[13] |
M. Gugat and G. Leugering, Global boundary controllability of the St. Venant equations between steady states, Annales de l'Institut Henri Poincaré, Nonlinear Analysis, 20 (2003), 1-11.
doi: 10.1016/S0294-1449(02)00004-5. |
[14] |
M. Gugat, G. Leugering and E. Schmidt, Global controllability between steady supercritical flows in channel networks, Mathematical Methods in the Applied Sciences, 27 (2004), 781-802.
doi: 10.1002/mma.471. |
[15] |
G. Leugering and E. J. P. G. Schmidt, On the modelling and stabilization of flows in networks of open canals, SIAM J. Control Optim., 41 (2002), 164-180.
doi: 10.1137/S0363012900375664. |
[16] |
T. Li, Modelling traffic flow with a time-dependent fundamental diagram, Math. Meth. Appl. Sci., 27 (2004), 583-601.
doi: 10.1002/mma.470. |
[17] |
T. Li and B. Rao, Exact controllability for first order quasilinear hyperbolic systems with vertical characteristics, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 980-990.
doi: 10.1016/S0252-9602(09)60089-8. |
[18] |
T. Li, B. Rao and Z. Wang, Contrôlabilité observabilité unilatérales de systèmes hyperboliques quasi-linéaires, C. R. Math. Acad. Sci. Paris, 346 (2008), 1067-1072.
doi: 10.1016/j.crma.2008.09.004. |
[19] |
T. Li and L. Yu, Exact controllability for first order quasilinear hyperbolic systems with zero eigenvalues, Chinese Ann. Math. Ser. B, 24 (2003), 415-422.
doi: 10.1142/S0252959903000414. |
[20] |
T. T. Li, Exact controllability of quasilinear hyperbolic equations (or systems), Appl. Math. J. Chinese Univ. Ser. A, 20 (2005), 127-146. |
[21] |
M. Slemrod, Boundary feedback stabilization for a quasilinear wave equation, in "Control Theory for Distributed Parameter Systems and Applications" (Vorau, 1982), Lecture Notes in Control and Information Sciences, 54, Springer, Berlin, (1983), 221-237.
doi: 10.1007/BFb0043951. |
[22] |
C.-Z. Xu and G. Sallet, Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems, ESAIM Control Optim. Calc. Var., 7 (2002), 421-442 (electronic).
doi: 10.1051/cocv:2002062. |
[23] |
E. Zuazua, Controllability of partial differential equations: Some results and open problems, in "Handbook of Differential Equations: Evolutionary Equations. Vol. III" (eds. C. Dafermos and E. Feireisl), Elsevier/North-Holland, Amsterdam, (2007), 527-621.
doi: 10.1016/S1874-5717(07)80010-7. |
[1] |
Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks and Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751 |
[2] |
Adimurthi , Shyam Sundar Ghoshal, G. D. Veerappa Gowda. Exact controllability of scalar conservation laws with strict convex flux. Mathematical Control and Related Fields, 2014, 4 (4) : 401-449. doi: 10.3934/mcrf.2014.4.401 |
[3] |
Avner Friedman. Conservation laws in mathematical biology. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081 |
[4] |
Mauro Garavello. A review of conservation laws on networks. Networks and Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565 |
[5] |
Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010 |
[6] |
Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159 |
[7] |
Wen-Xiu Ma. Conservation laws by symmetries and adjoint symmetries. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 707-721. doi: 10.3934/dcdss.2018044 |
[8] |
Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143 |
[9] |
Yanbo Hu, Wancheng Sheng. The Riemann problem of conservation laws in magnetogasdynamics. Communications on Pure and Applied Analysis, 2013, 12 (2) : 755-769. doi: 10.3934/cpaa.2013.12.755 |
[10] |
Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73 |
[11] |
Peter Giesl, Sigurdur Hafstein. Computational methods for Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : i-ii. doi: 10.3934/dcdsb.2015.20.8i |
[12] |
Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 41-74. doi: 10.3934/dcdsb.2010.14.41 |
[13] |
Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75 |
[14] |
Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks and Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393 |
[15] |
Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673 |
[16] |
Rinaldo M. Colombo, Kenneth H. Karlsen, Frédéric Lagoutière, Andrea Marson. Special issue on contemporary topics in conservation laws. Networks and Heterogeneous Media, 2016, 11 (2) : i-ii. doi: 10.3934/nhm.2016.11.2i |
[17] |
Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2010, 5 (3) : 617-633. doi: 10.3934/nhm.2010.5.617 |
[18] |
Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644 |
[19] |
Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic and Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35 |
[20] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
2021 Impact Factor: 1.141
Tools
Metrics
Other articles
by authors
[Back to Top]