• Previous Article
    Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws
  • MCRF Home
  • This Issue
  • Next Article
    Controllability problems for the 1-d wave equations on a half-axis with Neumann boundary control
June  2013, 3(2): 143-160. doi: 10.3934/mcrf.2013.3.143

Stability of the determination of a time-dependent coefficient in parabolic equations

1. 

LMAM, UMR 7122, Université de Lorraine, Ile du Saulcy, 57045 Metz, cedex 1, France

2. 

UMR-7332, Aix Marseille Université, Centre de Physique Théorique, Campus de Luminy, Case 907, 13288 Marseille, cedex 9, France

Received  February 2012 Revised  May 2012 Published  March 2013

We establish a Lipschitz stability estimate for the inverse problem consisting in the determination of the coefficient $\sigma(t)$, appearing in a Dirichlet initial-boundary value problem for the parabolic equation $\partial_tu-\Delta_x u+\sigma(t)f(x)u=0$, from Neumann boundary data. We extend this result to the same inverse problem when the previous linear parabolic equation is changed to the semi-linear parabolic equation $\partial_tu-\Delta_x u=F(x,t,\sigma(t),u(x,t))$.
Citation: Mourad Choulli, Yavar Kian. Stability of the determination of a time-dependent coefficient in parabolic equations. Mathematical Control & Related Fields, 2013, 3 (2) : 143-160. doi: 10.3934/mcrf.2013.3.143
References:
[1]

J. R. Cannon and S. Pérez Esteva, An inverse problem for the heat equation,, Inverse Problems, 2 (1986), 395. Google Scholar

[2]

J. R. Cannon and S. Pérez Esteva, A note on an inverse problem related to the 3-D heat equation,, in, 77 (1986), 133. Google Scholar

[3]

J. R. Cannon and Y. Lin, Determination of a parameter p(t) in some quasilinear parabolic differential equations,, Inverse Problems, 4 (1988), 35. Google Scholar

[4]

J. R. Cannon and Y. Lin, An inverse problem of finding a parameter in a semi-linear heat equation,, J. Math. Anal. Appl., 145 (1990), 470. doi: 10.1016/0022-247X(90)90414-B. Google Scholar

[5]

M. Choulli, An abstract inverse problem,, J. Appl. Math. Stoc. Ana., 4 (1991), 117. doi: 10.1155/S1048953391000084. Google Scholar

[6]

M. Choulli, Abstract inverse problem and application,, J. Math. Anal. Appl., 160 (1991), 190. doi: 10.1016/0022-247X(91)90299-F. Google Scholar

[7]

M. Choulli, "Une Introduction aux Problèmes Inverses Elliptiques et Paraboliques,", Mathématiques & Applications (Berlin), 65 (2009). doi: 10.1007/978-3-642-02460-3. Google Scholar

[8]

M. Choulli, E. M. Ouhabaz and M. Yamamoto, Stable determination of a semilinear term in a parabolic equation,, Commun. Pure Appl. Anal., 5 (2006), 447. doi: 10.3934/cpaa.2006.5.447. Google Scholar

[9]

M. Choulli and M. Yamamoto, Some stability estimates in determining sources and coefficients,, J. Inv. Ill-Posed Problems, 14 (2006), 355. doi: 10.1163/156939406777570996. Google Scholar

[10]

M. Choulli and M. Yamamoto, Global existence and stability for an inverse coefficient problem for a semilinear parabolic equation,, Arch. Math. (Basel), 97 (2011), 587. doi: 10.1007/s00013-011-0329-z. Google Scholar

[11]

G. Eskin, Inverse hyperbolic problems with time-dependent coefficients,, Commun. PDE, 32 (2007), 1737. doi: 10.1080/03605300701382340. Google Scholar

[12]

G. Eskin, Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect,, J. Math. Phys., 49 (2008). doi: 10.1063/1.2841329. Google Scholar

[13]

S. Itô, "Diffusion Equations,", Transaction of Mathematical Monographs, 114 (1992). Google Scholar

[14]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Translations of Mathematical Monographs, (1968). Google Scholar

[15]

A. Lorenzi and E. Sinestrari, "Stability Results for a Partial Integrodifferential Equation,", Proc. of the Meeting, (1987). Google Scholar

[16]

A. Lorenzi and E. Sinestrari, An inverse problem in the theory of materials with memory,, J. Nonlinear Anal., 12 (1988), 1317. doi: 10.1016/0362-546X(88)90080-6. Google Scholar

[17]

A. I. Prilepko and D. G. Orlovskiĭ, Determination of evolution parameter of an equation and inverse problems in mathematical physics. I,, Translations from Diff. Uravn., 21 (1985), 119. Google Scholar

[18]

A. I. Prilepko and D. G. Orlovskiĭ, Determination of evolution parameter of an equation and inverse problems in mathematical physics. II,, Translations from Diff. Uravn., 21 (1985), 694. Google Scholar

[19]

R. Salazar, "Determination of Time-Dependent Coefficients for a Hyperbolic Inverse Problem,", Ph.D. Thesis, (2010). Google Scholar

show all references

References:
[1]

J. R. Cannon and S. Pérez Esteva, An inverse problem for the heat equation,, Inverse Problems, 2 (1986), 395. Google Scholar

[2]

J. R. Cannon and S. Pérez Esteva, A note on an inverse problem related to the 3-D heat equation,, in, 77 (1986), 133. Google Scholar

[3]

J. R. Cannon and Y. Lin, Determination of a parameter p(t) in some quasilinear parabolic differential equations,, Inverse Problems, 4 (1988), 35. Google Scholar

[4]

J. R. Cannon and Y. Lin, An inverse problem of finding a parameter in a semi-linear heat equation,, J. Math. Anal. Appl., 145 (1990), 470. doi: 10.1016/0022-247X(90)90414-B. Google Scholar

[5]

M. Choulli, An abstract inverse problem,, J. Appl. Math. Stoc. Ana., 4 (1991), 117. doi: 10.1155/S1048953391000084. Google Scholar

[6]

M. Choulli, Abstract inverse problem and application,, J. Math. Anal. Appl., 160 (1991), 190. doi: 10.1016/0022-247X(91)90299-F. Google Scholar

[7]

M. Choulli, "Une Introduction aux Problèmes Inverses Elliptiques et Paraboliques,", Mathématiques & Applications (Berlin), 65 (2009). doi: 10.1007/978-3-642-02460-3. Google Scholar

[8]

M. Choulli, E. M. Ouhabaz and M. Yamamoto, Stable determination of a semilinear term in a parabolic equation,, Commun. Pure Appl. Anal., 5 (2006), 447. doi: 10.3934/cpaa.2006.5.447. Google Scholar

[9]

M. Choulli and M. Yamamoto, Some stability estimates in determining sources and coefficients,, J. Inv. Ill-Posed Problems, 14 (2006), 355. doi: 10.1163/156939406777570996. Google Scholar

[10]

M. Choulli and M. Yamamoto, Global existence and stability for an inverse coefficient problem for a semilinear parabolic equation,, Arch. Math. (Basel), 97 (2011), 587. doi: 10.1007/s00013-011-0329-z. Google Scholar

[11]

G. Eskin, Inverse hyperbolic problems with time-dependent coefficients,, Commun. PDE, 32 (2007), 1737. doi: 10.1080/03605300701382340. Google Scholar

[12]

G. Eskin, Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect,, J. Math. Phys., 49 (2008). doi: 10.1063/1.2841329. Google Scholar

[13]

S. Itô, "Diffusion Equations,", Transaction of Mathematical Monographs, 114 (1992). Google Scholar

[14]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Translations of Mathematical Monographs, (1968). Google Scholar

[15]

A. Lorenzi and E. Sinestrari, "Stability Results for a Partial Integrodifferential Equation,", Proc. of the Meeting, (1987). Google Scholar

[16]

A. Lorenzi and E. Sinestrari, An inverse problem in the theory of materials with memory,, J. Nonlinear Anal., 12 (1988), 1317. doi: 10.1016/0362-546X(88)90080-6. Google Scholar

[17]

A. I. Prilepko and D. G. Orlovskiĭ, Determination of evolution parameter of an equation and inverse problems in mathematical physics. I,, Translations from Diff. Uravn., 21 (1985), 119. Google Scholar

[18]

A. I. Prilepko and D. G. Orlovskiĭ, Determination of evolution parameter of an equation and inverse problems in mathematical physics. II,, Translations from Diff. Uravn., 21 (1985), 694. Google Scholar

[19]

R. Salazar, "Determination of Time-Dependent Coefficients for a Hyperbolic Inverse Problem,", Ph.D. Thesis, (2010). Google Scholar

[1]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[2]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[3]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[4]

Mourad Choulli, El Maati Ouhabaz, Masahiro Yamamoto. Stable determination of a semilinear term in a parabolic equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 447-462. doi: 10.3934/cpaa.2006.5.447

[5]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

[6]

Paul Sacks, Mahamadi Warma. Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1$-data. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 761-787. doi: 10.3934/dcds.2014.34.761

[7]

Anne Mund, Christina Kuttler, Judith Pérez-Velázquez. Existence and uniqueness of solutions to a family of semi-linear parabolic systems using coupled upper-lower solutions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5695-5707. doi: 10.3934/dcdsb.2019102

[8]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[9]

J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176

[10]

Yongqin Liu. The point-wise estimates of solutions for semi-linear dissipative wave equation. Communications on Pure & Applied Analysis, 2013, 12 (1) : 237-252. doi: 10.3934/cpaa.2013.12.237

[11]

Jianhai Bao, Xing Huang, Chenggui Yuan. New regularity of kolmogorov equation and application on approximation of semi-linear spdes with Hölder continuous drifts. Communications on Pure & Applied Analysis, 2019, 18 (1) : 341-360. doi: 10.3934/cpaa.2019018

[12]

Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control & Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014

[13]

Nguyen Thieu Huy, Vu Thi Ngoc Ha, Pham Truong Xuan. Boundedness and stability of solutions to semi-linear equations and applications to fluid dynamics. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2103-2116. doi: 10.3934/cpaa.2016029

[14]

Qiang Du, Jiang Yang, Zhi Zhou. Analysis of a nonlocal-in-time parabolic equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 339-368. doi: 10.3934/dcdsb.2017016

[15]

Patrick Martinez, Judith Vancostenoble. The cost of boundary controllability for a parabolic equation with inverse square potential. Evolution Equations & Control Theory, 2019, 8 (2) : 397-422. doi: 10.3934/eect.2019020

[16]

Yavar Kian. Stability of the determination of a coefficient for wave equations in an infinite waveguide. Inverse Problems & Imaging, 2014, 8 (3) : 713-732. doi: 10.3934/ipi.2014.8.713

[17]

Wenqiang Zhao. Random dynamics of non-autonomous semi-linear degenerate parabolic equations on $\mathbb{R}^N$ driven by an unbounded additive noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2499-2526. doi: 10.3934/dcdsb.2018065

[18]

Tohru Nakamura, Shinya Nishibata. Energy estimate for a linear symmetric hyperbolic-parabolic system in half line. Kinetic & Related Models, 2013, 6 (4) : 883-892. doi: 10.3934/krm.2013.6.883

[19]

Michael Winkler. Nontrivial ordered ω-limit sets in a linear degenerate parabolic equation. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 739-750. doi: 10.3934/dcds.2007.17.739

[20]

José M. Amigó, Isabelle Catto, Ángel Giménez, José Valero. Attractors for a non-linear parabolic equation modelling suspension flows. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 205-231. doi: 10.3934/dcdsb.2009.11.205

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]