June  2013, 3(2): 185-208. doi: 10.3934/mcrf.2013.3.185

Time optimal control for a nonholonomic system with state constraint

1. 

Université de Lorraine, Institut Elie Cartan de Lorraine, UMR 7502, Vandoeuvre-lès-Nancy, F-54506, France, France

Received  June 2012 Revised  December 2012 Published  March 2013

The aim of this paper is to tackle the time optimal controllability of an $(n+1)$-dimensional nonholonomic integrator. In the optimal control problem we consider, the state variables are subject to a bound constraint. We give a full description of the optimal control and optimal trajectories are explicitly obtained. The optimal trajectories we construct, lie in a 2-dimensional plane and they are composed of arcs of circle.
Citation: Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185
References:
[1]

A. Agrachev, D. Barilari and U. Boscain, On the Hausdorff volume in sub-Riemannian geometry,, Calc. Var. Partial Differential Equations, 43 (2012), 355.  doi: 10.1007/s00526-011-0414-y.  Google Scholar

[2]

A. A. Agrachev and Y. L. Sachkov, "Control Theory from the Geometric Viewpoint,", Encyclopaedia of Mathematical Sciences, 87 (2004).   Google Scholar

[3]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,", Oxford Mathematical Monographs, (2000).   Google Scholar

[4]

R. Beals, B. Gaveau and P. C. Greiner, Hamilton-Jacobi theory and the heat kernel on Heisenberg groups,, J. Math. Pures Appl. (9), 79 (2000), 633.  doi: 10.1016/S0021-7824(00)00169-0.  Google Scholar

[5]

A. M. Bloch, Nonholonomic mechanics and control,, With the collaboration of J. Baillieul, 24 (2003).  doi: 10.1007/b97376.  Google Scholar

[6]

J. F. Bonnans and A. Hermant, Well-posedness of the shooting algorithm for state constrained optimal control problems with a single constraint and control,, SIAM J. Control Optim., 46 (2007), 1398.  doi: 10.1137/06065756X.  Google Scholar

[7]

R. W. Brockett, Control theory and singular Riemannian geometry,, in, (1982), 11.   Google Scholar

[8]

A. E. Bryson, Jr. and Y. C. Ho, Applied optimal control. Optimization, estimation, and control,, Revised printing, (1975).   Google Scholar

[9]

L. Cesari, "Optimization-Theory and Applications. Problems with Ordinary Differential Equations,", Applications of Mathematics (New York), 17 (1983).   Google Scholar

[10]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", Second edition, 5 (1990).  doi: 10.1137/1.9781611971309.  Google Scholar

[11]

J.-M. Coron, "Control and Nonlinearity,", Mathematical Surveys and Monographs, 136 (2007).   Google Scholar

[12]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Mathematics, (1992).   Google Scholar

[13]

R. F. Hartl, S. P. Sethi and R. G. Vickson, A survey of the maximum principles for optimal control problems with state constraints,, SIAM Rev., 37 (1995), 181.  doi: 10.1137/1037043.  Google Scholar

[14]

R. A. Horn and C. R. Johnson, "Matrix Analysis,", Cambridge University Press, (1985).   Google Scholar

[15]

A. D. Ioffe and V. M. Tihomirov, "Theory of Extremal Problems,", Studies in Mathematics and its Applications, 6 (1979).   Google Scholar

[16]

J. Lohéac, J.-F. Scheid and M. Tucsnak, Controllability and time optimal control for low Reynolds numbers swimmers,, Acta Applicandae Mathematicae, 123 (2013), 175.  doi: 10.1007/s10440-012-9760-9.  Google Scholar

[17]

C. Prieur and E. Trélat, Robust optimal stabilization of the Brockett integrator via a hybrid feedback,, Math. Control Signals Systems, 17 (2005), 201.  doi: 10.1007/s00498-005-0152-9.  Google Scholar

[18]

A. Shapere and F. Wilczek, Efficiencies of self-propulsion at low Reynolds number,, J. Fluid. Mech., 198 (1989), 587.  doi: 10.1017/S0022112089000261.  Google Scholar

show all references

References:
[1]

A. Agrachev, D. Barilari and U. Boscain, On the Hausdorff volume in sub-Riemannian geometry,, Calc. Var. Partial Differential Equations, 43 (2012), 355.  doi: 10.1007/s00526-011-0414-y.  Google Scholar

[2]

A. A. Agrachev and Y. L. Sachkov, "Control Theory from the Geometric Viewpoint,", Encyclopaedia of Mathematical Sciences, 87 (2004).   Google Scholar

[3]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,", Oxford Mathematical Monographs, (2000).   Google Scholar

[4]

R. Beals, B. Gaveau and P. C. Greiner, Hamilton-Jacobi theory and the heat kernel on Heisenberg groups,, J. Math. Pures Appl. (9), 79 (2000), 633.  doi: 10.1016/S0021-7824(00)00169-0.  Google Scholar

[5]

A. M. Bloch, Nonholonomic mechanics and control,, With the collaboration of J. Baillieul, 24 (2003).  doi: 10.1007/b97376.  Google Scholar

[6]

J. F. Bonnans and A. Hermant, Well-posedness of the shooting algorithm for state constrained optimal control problems with a single constraint and control,, SIAM J. Control Optim., 46 (2007), 1398.  doi: 10.1137/06065756X.  Google Scholar

[7]

R. W. Brockett, Control theory and singular Riemannian geometry,, in, (1982), 11.   Google Scholar

[8]

A. E. Bryson, Jr. and Y. C. Ho, Applied optimal control. Optimization, estimation, and control,, Revised printing, (1975).   Google Scholar

[9]

L. Cesari, "Optimization-Theory and Applications. Problems with Ordinary Differential Equations,", Applications of Mathematics (New York), 17 (1983).   Google Scholar

[10]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", Second edition, 5 (1990).  doi: 10.1137/1.9781611971309.  Google Scholar

[11]

J.-M. Coron, "Control and Nonlinearity,", Mathematical Surveys and Monographs, 136 (2007).   Google Scholar

[12]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Mathematics, (1992).   Google Scholar

[13]

R. F. Hartl, S. P. Sethi and R. G. Vickson, A survey of the maximum principles for optimal control problems with state constraints,, SIAM Rev., 37 (1995), 181.  doi: 10.1137/1037043.  Google Scholar

[14]

R. A. Horn and C. R. Johnson, "Matrix Analysis,", Cambridge University Press, (1985).   Google Scholar

[15]

A. D. Ioffe and V. M. Tihomirov, "Theory of Extremal Problems,", Studies in Mathematics and its Applications, 6 (1979).   Google Scholar

[16]

J. Lohéac, J.-F. Scheid and M. Tucsnak, Controllability and time optimal control for low Reynolds numbers swimmers,, Acta Applicandae Mathematicae, 123 (2013), 175.  doi: 10.1007/s10440-012-9760-9.  Google Scholar

[17]

C. Prieur and E. Trélat, Robust optimal stabilization of the Brockett integrator via a hybrid feedback,, Math. Control Signals Systems, 17 (2005), 201.  doi: 10.1007/s00498-005-0152-9.  Google Scholar

[18]

A. Shapere and F. Wilczek, Efficiencies of self-propulsion at low Reynolds number,, J. Fluid. Mech., 198 (1989), 587.  doi: 10.1017/S0022112089000261.  Google Scholar

[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[2]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[3]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[4]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[5]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[6]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[7]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[8]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[9]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[10]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[11]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[12]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[13]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

[14]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[15]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[16]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[17]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[18]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[19]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[20]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]