June  2013, 3(2): 209-231. doi: 10.3934/mcrf.2013.3.209

Stock trading rules under a switchable market

1. 

Department of Mathematics, University of Georgia, Athens, GA 30602, United States, United States

Received  January 2012 Revised  September 2012 Published  March 2013

This work provides an optimal trading rule that allows buying and selling of an asset sequentially over time. The asset price follows a regime switching model involving a geometric Brownian motion and a mean reversion model. The objective is to determine a sequence of trading times to maximize an overall return. The corresponding value functions are characterized by a set of quasi variational inequalities. Closed-form solutions are obtained. The sequence of trading times can be given in terms of various threshold levels. Numerical examples are given to demonstrate the results.
Citation: Duy Nguyen, Jingzhi Tie, Qing Zhang. Stock trading rules under a switchable market. Mathematical Control & Related Fields, 2013, 3 (2) : 209-231. doi: 10.3934/mcrf.2013.3.209
References:
[1]

M. Dai, Q. Zhang and Q. Zhu, Trend following trading under a regime switching model,, SIAM Journal on Financial Mathematics, 1 (2010), 780.  doi: 10.1137/080742889.  Google Scholar

[2]

T. C. Johnson and M. Zervos, A discretionary stopping problem with applications to the optimal timing of investment decisions,, Working paper, (2011).   Google Scholar

[3]

H. T. Kong, G. Yin and Q. Zhang, A trend following strategy: Conditions for optimality,, Automatica J. IFAC, 47 (2011), 661.  doi: 10.1016/j.automatica.2011.01.039.  Google Scholar

[4]

A. Løkka and M. Zervos, A model for the long-term optimal capacity level of an investment project,, Working paper, (2011).   Google Scholar

[5]

A. Merhi and M. Zervos, A model for reversible investment capacity expansion,, SIAM Journal on Control and Optimization, 46 (2007), 839.  doi: 10.1137/050640758.  Google Scholar

[6]

D. Nguyen, Ph.D. Dissertation,, 2013., ().   Google Scholar

[7]

D. Nguyen, J. Tie and Q. Zhang, An optimal trading rule under switchable mean-reversion model,, Journal of Optimization Theory and Applications, ().   Google Scholar

[8]

B. Øksendal, "Stochastic Differential Equations. An Introduction with Applications,", Sixth edition, (2003).  doi: 10.1007/978-3-642-14394-6.  Google Scholar

[9]

W. J. O'Neil, "How to Make Money in Stocks,", Second edition, (1995).   Google Scholar

[10]

J. Yu and Q. Zhang, Optimal trend-following trading rules under a three-state regime switching model,, Mathematical Control and Related Fields, 2 (2012), 81.  doi: 10.3934/mcrf.2012.2.81.  Google Scholar

[11]

H. Zhang and Q. Zhang, Trading a mean-reverting asset: Buy low and sell high,, Automatica J. IFAC, 44 (2008), 1511.  doi: 10.1016/j.automatica.2007.11.003.  Google Scholar

show all references

References:
[1]

M. Dai, Q. Zhang and Q. Zhu, Trend following trading under a regime switching model,, SIAM Journal on Financial Mathematics, 1 (2010), 780.  doi: 10.1137/080742889.  Google Scholar

[2]

T. C. Johnson and M. Zervos, A discretionary stopping problem with applications to the optimal timing of investment decisions,, Working paper, (2011).   Google Scholar

[3]

H. T. Kong, G. Yin and Q. Zhang, A trend following strategy: Conditions for optimality,, Automatica J. IFAC, 47 (2011), 661.  doi: 10.1016/j.automatica.2011.01.039.  Google Scholar

[4]

A. Løkka and M. Zervos, A model for the long-term optimal capacity level of an investment project,, Working paper, (2011).   Google Scholar

[5]

A. Merhi and M. Zervos, A model for reversible investment capacity expansion,, SIAM Journal on Control and Optimization, 46 (2007), 839.  doi: 10.1137/050640758.  Google Scholar

[6]

D. Nguyen, Ph.D. Dissertation,, 2013., ().   Google Scholar

[7]

D. Nguyen, J. Tie and Q. Zhang, An optimal trading rule under switchable mean-reversion model,, Journal of Optimization Theory and Applications, ().   Google Scholar

[8]

B. Øksendal, "Stochastic Differential Equations. An Introduction with Applications,", Sixth edition, (2003).  doi: 10.1007/978-3-642-14394-6.  Google Scholar

[9]

W. J. O'Neil, "How to Make Money in Stocks,", Second edition, (1995).   Google Scholar

[10]

J. Yu and Q. Zhang, Optimal trend-following trading rules under a three-state regime switching model,, Mathematical Control and Related Fields, 2 (2012), 81.  doi: 10.3934/mcrf.2012.2.81.  Google Scholar

[11]

H. Zhang and Q. Zhang, Trading a mean-reverting asset: Buy low and sell high,, Automatica J. IFAC, 44 (2008), 1511.  doi: 10.1016/j.automatica.2007.11.003.  Google Scholar

[1]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[2]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[3]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[4]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[7]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[8]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[9]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[10]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[11]

Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020394

[12]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[13]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021023

[14]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[15]

Philippe Laurençot, Christoph Walker. Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 677-694. doi: 10.3934/dcdss.2020360

[16]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[17]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296

[18]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[19]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[20]

Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020033

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]