June  2013, 3(2): 209-231. doi: 10.3934/mcrf.2013.3.209

Stock trading rules under a switchable market

1. 

Department of Mathematics, University of Georgia, Athens, GA 30602, United States, United States

Received  January 2012 Revised  September 2012 Published  March 2013

This work provides an optimal trading rule that allows buying and selling of an asset sequentially over time. The asset price follows a regime switching model involving a geometric Brownian motion and a mean reversion model. The objective is to determine a sequence of trading times to maximize an overall return. The corresponding value functions are characterized by a set of quasi variational inequalities. Closed-form solutions are obtained. The sequence of trading times can be given in terms of various threshold levels. Numerical examples are given to demonstrate the results.
Citation: Duy Nguyen, Jingzhi Tie, Qing Zhang. Stock trading rules under a switchable market. Mathematical Control & Related Fields, 2013, 3 (2) : 209-231. doi: 10.3934/mcrf.2013.3.209
References:
[1]

M. Dai, Q. Zhang and Q. Zhu, Trend following trading under a regime switching model,, SIAM Journal on Financial Mathematics, 1 (2010), 780. doi: 10.1137/080742889. Google Scholar

[2]

T. C. Johnson and M. Zervos, A discretionary stopping problem with applications to the optimal timing of investment decisions,, Working paper, (2011). Google Scholar

[3]

H. T. Kong, G. Yin and Q. Zhang, A trend following strategy: Conditions for optimality,, Automatica J. IFAC, 47 (2011), 661. doi: 10.1016/j.automatica.2011.01.039. Google Scholar

[4]

A. Løkka and M. Zervos, A model for the long-term optimal capacity level of an investment project,, Working paper, (2011). Google Scholar

[5]

A. Merhi and M. Zervos, A model for reversible investment capacity expansion,, SIAM Journal on Control and Optimization, 46 (2007), 839. doi: 10.1137/050640758. Google Scholar

[6]

D. Nguyen, Ph.D. Dissertation,, 2013., (). Google Scholar

[7]

D. Nguyen, J. Tie and Q. Zhang, An optimal trading rule under switchable mean-reversion model,, Journal of Optimization Theory and Applications, (). Google Scholar

[8]

B. Øksendal, "Stochastic Differential Equations. An Introduction with Applications,", Sixth edition, (2003). doi: 10.1007/978-3-642-14394-6. Google Scholar

[9]

W. J. O'Neil, "How to Make Money in Stocks,", Second edition, (1995). Google Scholar

[10]

J. Yu and Q. Zhang, Optimal trend-following trading rules under a three-state regime switching model,, Mathematical Control and Related Fields, 2 (2012), 81. doi: 10.3934/mcrf.2012.2.81. Google Scholar

[11]

H. Zhang and Q. Zhang, Trading a mean-reverting asset: Buy low and sell high,, Automatica J. IFAC, 44 (2008), 1511. doi: 10.1016/j.automatica.2007.11.003. Google Scholar

show all references

References:
[1]

M. Dai, Q. Zhang and Q. Zhu, Trend following trading under a regime switching model,, SIAM Journal on Financial Mathematics, 1 (2010), 780. doi: 10.1137/080742889. Google Scholar

[2]

T. C. Johnson and M. Zervos, A discretionary stopping problem with applications to the optimal timing of investment decisions,, Working paper, (2011). Google Scholar

[3]

H. T. Kong, G. Yin and Q. Zhang, A trend following strategy: Conditions for optimality,, Automatica J. IFAC, 47 (2011), 661. doi: 10.1016/j.automatica.2011.01.039. Google Scholar

[4]

A. Løkka and M. Zervos, A model for the long-term optimal capacity level of an investment project,, Working paper, (2011). Google Scholar

[5]

A. Merhi and M. Zervos, A model for reversible investment capacity expansion,, SIAM Journal on Control and Optimization, 46 (2007), 839. doi: 10.1137/050640758. Google Scholar

[6]

D. Nguyen, Ph.D. Dissertation,, 2013., (). Google Scholar

[7]

D. Nguyen, J. Tie and Q. Zhang, An optimal trading rule under switchable mean-reversion model,, Journal of Optimization Theory and Applications, (). Google Scholar

[8]

B. Øksendal, "Stochastic Differential Equations. An Introduction with Applications,", Sixth edition, (2003). doi: 10.1007/978-3-642-14394-6. Google Scholar

[9]

W. J. O'Neil, "How to Make Money in Stocks,", Second edition, (1995). Google Scholar

[10]

J. Yu and Q. Zhang, Optimal trend-following trading rules under a three-state regime switching model,, Mathematical Control and Related Fields, 2 (2012), 81. doi: 10.3934/mcrf.2012.2.81. Google Scholar

[11]

H. Zhang and Q. Zhang, Trading a mean-reverting asset: Buy low and sell high,, Automatica J. IFAC, 44 (2008), 1511. doi: 10.1016/j.automatica.2007.11.003. Google Scholar

[1]

Hoi Tin Kong, Qing Zhang. An optimal trading rule of a mean-reverting asset. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1403-1417. doi: 10.3934/dcdsb.2010.14.1403

[2]

Yusuke Murase, Atsushi Kadoya, Nobuyuki Kenmochi. Optimal control problems for quasi-variational inequalities and its numerical approximation. Conference Publications, 2011, 2011 (Special) : 1101-1110. doi: 10.3934/proc.2011.2011.1101

[3]

Lori Badea. Multigrid methods for some quasi-variational inequalities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1457-1471. doi: 10.3934/dcdss.2013.6.1457

[4]

Yusuke Murase, Risei Kano, Nobuyuki Kenmochi. Elliptic Quasi-variational inequalities and applications. Conference Publications, 2009, 2009 (Special) : 583-591. doi: 10.3934/proc.2009.2009.583

[5]

Yanqing Hu, Zaiming Liu, Jinbiao Wu. Optimal impulse control of a mean-reverting inventory with quadratic costs. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1685-1700. doi: 10.3934/jimo.2018027

[6]

Yurii Nesterov, Laura Scrimali. Solving strongly monotone variational and quasi-variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1383-1396. doi: 10.3934/dcds.2011.31.1383

[7]

Laura Scrimali. Mixed behavior network equilibria and quasi-variational inequalities. Journal of Industrial & Management Optimization, 2009, 5 (2) : 363-379. doi: 10.3934/jimo.2009.5.363

[8]

Edward Allen. Environmental variability and mean-reverting processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2073-2089. doi: 10.3934/dcdsb.2016037

[9]

Haisen Zhang. Clarke directional derivatives of regularized gap functions for nonsmooth quasi-variational inequalities. Mathematical Control & Related Fields, 2014, 4 (3) : 365-379. doi: 10.3934/mcrf.2014.4.365

[10]

Qihong Chen. Recovery of local volatility for financial assets with mean-reverting price processes. Mathematical Control & Related Fields, 2018, 8 (3&4) : 625-635. doi: 10.3934/mcrf.2018026

[11]

Weiwei Wang, Ping Chen. A mean-reverting currency model with floating interest rates in uncertain environment. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1921-1936. doi: 10.3934/jimo.2018129

[12]

Masao Fukushima. A class of gap functions for quasi-variational inequality problems. Journal of Industrial & Management Optimization, 2007, 3 (2) : 165-171. doi: 10.3934/jimo.2007.3.165

[13]

Nobuyuki Kenmochi. Parabolic quasi-variational diffusion problems with gradient constraints. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 423-438. doi: 10.3934/dcdss.2013.6.423

[14]

Takeshi Fukao, Nobuyuki Kenmochi. Quasi-variational inequality approach to heat convection problems with temperature dependent velocity constraint. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2523-2538. doi: 10.3934/dcds.2015.35.2523

[15]

Wenqing Bao, Xianyi Wu, Xian Zhou. Optimal stopping problems with restricted stopping times. Journal of Industrial & Management Optimization, 2017, 13 (1) : 399-411. doi: 10.3934/jimo.2016023

[16]

Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. Ergodic control for a mean reverting inventory model. Journal of Industrial & Management Optimization, 2018, 14 (3) : 857-876. doi: 10.3934/jimo.2017079

[17]

Jakob Kotas. Optimal stopping for response-guided dosing. Networks & Heterogeneous Media, 2019, 14 (1) : 43-52. doi: 10.3934/nhm.2019003

[18]

Mou-Hsiung Chang, Tao Pang, Moustapha Pemy. Finite difference approximation for stochastic optimal stopping problems with delays. Journal of Industrial & Management Optimization, 2008, 4 (2) : 227-246. doi: 10.3934/jimo.2008.4.227

[19]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[20]

Volker Rehbock, Iztok Livk. Optimal control of a batch crystallization process. Journal of Industrial & Management Optimization, 2007, 3 (3) : 585-596. doi: 10.3934/jimo.2007.3.585

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]