September  2013, 3(3): 287-302. doi: 10.3934/mcrf.2013.3.287

The Serret-Andoyer Riemannian metric and Euler-Poinsot rigid body motion

1. 

Institut de mathématiques de Bourgogne, 9 avenue Savary, 21078 Dijon, France

2. 

INRIA Sophia Antipolis Méditerranée, B.P. 93, route des Lucioles, 06902 Sophia Antipolis, France, France

Received  December 2012 Revised  March 2013 Published  September 2013

The Euler-Poinsot rigid body motion is a standard mechanical system and is the model for left-invariant Riemannian metrics on $SO(3)$. In this article, using the Serret-Andoyer variables we parameterize the solutions and compute the Jacobi fields in relation with the conjugate locus evaluation. Moreover the metric can be restricted to a 2D surface and the conjugate points of this metric are evaluated using recent work [4] on surfaces of revolution.
Citation: Bernard Bonnard, Olivier Cots, Nataliya Shcherbakova. The Serret-Andoyer Riemannian metric and Euler-Poinsot rigid body motion. Mathematical Control & Related Fields, 2013, 3 (3) : 287-302. doi: 10.3934/mcrf.2013.3.287
References:
[1]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,", Translated from the Russian by K. Vogtmann and A. Weinstein, (1989).   Google Scholar

[2]

L. Bates and F. Fassò, The conjugate locus for the euler top. I. The axisymmetric case,, Int. Math. Forum, 2 (2007), 2109.   Google Scholar

[3]

B. Bonnard, Contrôlabilité de systemes mécaniques sur les groupes de lie (French), [controllability of mechanical systems on lie groups],, SIAM J. Control Optim., 22 (1984), 711.  doi: 10.1137/0322045.  Google Scholar

[4]

B. Bonnard, J.-B. Caillau, R. Sinclair and M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1081.  doi: 10.1016/j.anihpc.2008.03.010.  Google Scholar

[5]

B. Bonnard, O. Cots and N. Shcherbakova, Energy minimization problem in two-level dissipative quantum control: Meridian case,, J. Math. Sci., (2013).   Google Scholar

[6]

M. do Carmo, "Riemannian Geometry,'' Translated from the second Portuguese edition by Francis Flaherty,, Mathematics: Theory & Applications. Birkhäuser Boston, (1992).   Google Scholar

[7]

P. Gurfil, A. Elipe, W. Tangren and M. Efroimsky, The Serret-Andoyer formalism in rigid-body dynamics. I. Symmetries and perturbations,, Regul. Chaotic Dyn., 12 (2007), 389.  doi: 10.1134/S156035470704003X.  Google Scholar

[8]

J. Itoh and K. Kiyohara, The cut loci and the conjugate loci on ellipsoids,, Manuscripta Math., 114 (2004), 247.  doi: 10.1007/s00229-004-0455-z.  Google Scholar

[9]

V. Jurdjevic, "Geometric Control Theory,'', Cambridge studies in advanced mathematics, (1997).   Google Scholar

[10]

M. Lara and S. Ferrer, Closed form integration of the Hitzl-Breakwell problem in action-angle variables,, IAA-AAS-DyCoSS1-01-02 (AAS 12-302), (): 1.   Google Scholar

[11]

D. Lawden, "Elliptic Functions and Applications,'', Applied mathematical sciences, (1989).   Google Scholar

[12]

H. Poincaré, Sur les lignes géodésiques des surfaces convexes,, (French) [On the geodesic lines of convex surfaces] Trans. Amer. Math. Soc., 6 (1905), 237.  doi: 10.2307/1986219.  Google Scholar

[13]

K. Shiohama, T. Shioya and M. Tanaka, "The Geometry of Total Curvature on Complete Open Surfaces,'', Cambridge tracts in mathematics, (2003).  doi: 10.1017/CBO9780511543159.  Google Scholar

[14]

R. Sinclair and M. Tanaka, The cut locus of a two-sphere of revolution and toponogov's comparison theorem,, Tohoku Math. J. (2), 59 (2007), 379.  doi: 10.2748/tmj/1192117984.  Google Scholar

[15]

A. M. Vershik and V. Ya. Gershkovich, Nonholonomic dynamical systems, geometry of distributions, and variational problems,, vol. 16 of Dynamical Systems VII, 16 (1994), 1.   Google Scholar

[16]

H. Yuan, R. Zeier, N. Khaneja and S. Lloyd, Constructing two-qubit gates with minimal couplings,, Phys. Rev. A (3), 79 (2009).  doi: 10.1103/PhysRevA.79.042309.  Google Scholar

show all references

References:
[1]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,", Translated from the Russian by K. Vogtmann and A. Weinstein, (1989).   Google Scholar

[2]

L. Bates and F. Fassò, The conjugate locus for the euler top. I. The axisymmetric case,, Int. Math. Forum, 2 (2007), 2109.   Google Scholar

[3]

B. Bonnard, Contrôlabilité de systemes mécaniques sur les groupes de lie (French), [controllability of mechanical systems on lie groups],, SIAM J. Control Optim., 22 (1984), 711.  doi: 10.1137/0322045.  Google Scholar

[4]

B. Bonnard, J.-B. Caillau, R. Sinclair and M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1081.  doi: 10.1016/j.anihpc.2008.03.010.  Google Scholar

[5]

B. Bonnard, O. Cots and N. Shcherbakova, Energy minimization problem in two-level dissipative quantum control: Meridian case,, J. Math. Sci., (2013).   Google Scholar

[6]

M. do Carmo, "Riemannian Geometry,'' Translated from the second Portuguese edition by Francis Flaherty,, Mathematics: Theory & Applications. Birkhäuser Boston, (1992).   Google Scholar

[7]

P. Gurfil, A. Elipe, W. Tangren and M. Efroimsky, The Serret-Andoyer formalism in rigid-body dynamics. I. Symmetries and perturbations,, Regul. Chaotic Dyn., 12 (2007), 389.  doi: 10.1134/S156035470704003X.  Google Scholar

[8]

J. Itoh and K. Kiyohara, The cut loci and the conjugate loci on ellipsoids,, Manuscripta Math., 114 (2004), 247.  doi: 10.1007/s00229-004-0455-z.  Google Scholar

[9]

V. Jurdjevic, "Geometric Control Theory,'', Cambridge studies in advanced mathematics, (1997).   Google Scholar

[10]

M. Lara and S. Ferrer, Closed form integration of the Hitzl-Breakwell problem in action-angle variables,, IAA-AAS-DyCoSS1-01-02 (AAS 12-302), (): 1.   Google Scholar

[11]

D. Lawden, "Elliptic Functions and Applications,'', Applied mathematical sciences, (1989).   Google Scholar

[12]

H. Poincaré, Sur les lignes géodésiques des surfaces convexes,, (French) [On the geodesic lines of convex surfaces] Trans. Amer. Math. Soc., 6 (1905), 237.  doi: 10.2307/1986219.  Google Scholar

[13]

K. Shiohama, T. Shioya and M. Tanaka, "The Geometry of Total Curvature on Complete Open Surfaces,'', Cambridge tracts in mathematics, (2003).  doi: 10.1017/CBO9780511543159.  Google Scholar

[14]

R. Sinclair and M. Tanaka, The cut locus of a two-sphere of revolution and toponogov's comparison theorem,, Tohoku Math. J. (2), 59 (2007), 379.  doi: 10.2748/tmj/1192117984.  Google Scholar

[15]

A. M. Vershik and V. Ya. Gershkovich, Nonholonomic dynamical systems, geometry of distributions, and variational problems,, vol. 16 of Dynamical Systems VII, 16 (1994), 1.   Google Scholar

[16]

H. Yuan, R. Zeier, N. Khaneja and S. Lloyd, Constructing two-qubit gates with minimal couplings,, Phys. Rev. A (3), 79 (2009).  doi: 10.1103/PhysRevA.79.042309.  Google Scholar

[1]

Kai Koike. Wall effect on the motion of a rigid body immersed in a free molecular flow. Kinetic & Related Models, 2018, 11 (3) : 441-467. doi: 10.3934/krm.2018020

[2]

Šárka Nečasová, Joerg Wolf. On the existence of global strong solutions to the equations modeling a motion of a rigid body around a viscous fluid. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1539-1562. doi: 10.3934/dcds.2016.36.1539

[3]

Sujit Nair, Naomi Ehrich Leonard. Stable synchronization of rigid body networks. Networks & Heterogeneous Media, 2007, 2 (4) : 597-626. doi: 10.3934/nhm.2007.2.597

[4]

Sebastián Ferrer, Francisco J. Molero. Andoyer's variables and phases in the free rigid body. Journal of Geometric Mechanics, 2014, 6 (1) : 25-37. doi: 10.3934/jgm.2014.6.25

[5]

Maicon Sônego. Stable solution induced by domain geometry in the heat equation with nonlinear boundary conditions on surfaces of revolution. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5981-5988. doi: 10.3934/dcdsb.2019116

[6]

Giancarlo Benettin, Anna Maria Cherubini, Francesco Fassò. Regular and chaotic motions of the fast rotating rigid body: a numerical study. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 521-540. doi: 10.3934/dcdsb.2002.2.521

[7]

Giancarlo Benettin, Massimiliano Guzzo, Anatoly Neishtadt. A new problem of adiabatic invariance related to the rigid body dynamics. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 959-975. doi: 10.3934/dcds.2008.21.959

[8]

Arnab Roy, Takéo Takahashi. Local null controllability of a rigid body moving into a Boussinesq flow. Mathematical Control & Related Fields, 2019, 9 (4) : 793-836. doi: 10.3934/mcrf.2019050

[9]

Johannes Elschner, Guanghui Hu, Masahiro Yamamoto. Uniqueness in inverse elastic scattering from unbounded rigid surfaces of rectangular type. Inverse Problems & Imaging, 2015, 9 (1) : 127-141. doi: 10.3934/ipi.2015.9.127

[10]

Dmitriy Chebanov. New class of exact solutions for the equations of motion of a chain of $n$ rigid bodies. Conference Publications, 2013, 2013 (special) : 105-113. doi: 10.3934/proc.2013.2013.105

[11]

Miroslav Bulíček, Eduard Feireisl, Josef Málek, Roman Shvydkoy. On the motion of incompressible inhomogeneous Euler-Korteweg fluids. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 497-515. doi: 10.3934/dcdss.2010.3.497

[12]

Frederic Gabern, Àngel Jorba, Philippe Robutel. On the accuracy of restricted three-body models for the Trojan motion. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 843-854. doi: 10.3934/dcds.2004.11.843

[13]

Hiroshi Ozaki, Hiroshi Fukuda, Toshiaki Fujiwara. Determination of motion from orbit in the three-body problem. Conference Publications, 2011, 2011 (Special) : 1158-1166. doi: 10.3934/proc.2011.2011.1158

[14]

Matthias Hieber, Miho Murata. The $L^p$-approach to the fluid-rigid body interaction problem for compressible fluids. Evolution Equations & Control Theory, 2015, 4 (1) : 69-87. doi: 10.3934/eect.2015.4.69

[15]

Paul Deuring, Stanislav Kračmar, Šárka Nečasová. A leading term for the velocity of stationary viscous incompressible flow around a rigid body performing a rotation and a translation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1389-1409. doi: 10.3934/dcds.2017057

[16]

Amin Boumenir. Determining the shape of a solid of revolution. Mathematical Control & Related Fields, 2019, 9 (3) : 509-515. doi: 10.3934/mcrf.2019023

[17]

Aneta Wróblewska-Kamińska. Local pressure methods in Orlicz spaces for the motion of rigid bodies in a non-Newtonian fluid with general growth conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1417-1425. doi: 10.3934/dcdss.2013.6.1417

[18]

Bernard Ducomet, Šárka Nečasová. On the motion of rigid bodies in an incompressible or compressible viscous fluid under the action of gravitational forces. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1193-1213. doi: 10.3934/dcdss.2013.6.1193

[19]

Reinhard Farwig, Ronald B. Guenther, Enrique A. Thomann, Šárka Nečasová. The fundamental solution of linearized nonstationary Navier-Stokes equations of motion around a rotating and translating body. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 511-529. doi: 10.3934/dcds.2014.34.511

[20]

Hadia H. Selim, Juan L. G. Guirao, Elbaz I. Abouelmagd. Libration points in the restricted three-body problem: Euler angles, existence and stability. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 703-710. doi: 10.3934/dcdss.2019044

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (4)

[Back to Top]