September  2013, 3(3): 303-322. doi: 10.3934/mcrf.2013.3.303

Phantom tracking method, homogeneity and rapid stabilization

1. 

Institut universitaire de France and Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4, place Jussieu, 75005 Paris, France

Received  January 2013 Revised  April 2013 Published  September 2013

In this paper we explain on various examples the ``phantom tracking'' method, a method which can be used to stabilize nonlinear control systems modeled by ordinary differential equations or partial differential equations. We show how it can handle global controllability, homogeneity issues or fast stabilization.
Citation: Jean-Michel Coron. Phantom tracking method, homogeneity and rapid stabilization. Mathematical Control & Related Fields, 2013, 3 (3) : 303-322. doi: 10.3934/mcrf.2013.3.303
References:
[1]

Karine Beauchard, Jean Michel Coron, Mazyar Mirrahimi and Pierre Rouchon, Implicit lyapunov control of finite dimensional schrödinger equations,, Systems Control Lett., 56 (2007), 388.  doi: 10.1016/j.sysconle.2006.10.024.  Google Scholar

[2]

Sanjay P. Bhat and Dennis S. Bernstein, Geometric homogeneity with applications to finite-time stability,, Math. Control Signals Systems, 17 (2005), 101.  doi: 10.1007/s00498-005-0151-x.  Google Scholar

[3]

Bernard Bonnard, Contrôlabilité de systemes mécaniques sur les groupes de lie,, (French) [Controllability of mechanical systems on Lie groups] SIAM J. Control Optim., 22 (1984), 711.  doi: 10.1137/0322045.  Google Scholar

[4]

Bernard Bonnard, Ludovic Faubourg and Emmanuel Trélat, "Mécanique CÉleste Et Contrôle Des VÉhicules Spatiaux," (French) [Celestial mechanics and the control of space vehicles] Mathématiques & Applications (Berlin) [Mathematics & Applications],, Springer-Verlag, (2006).   Google Scholar

[5]

Christopher I. Byrnes and Alberto Isidori, New results and examples in nonlinear feedback stabilization,, Systems Control Lett., 12 (1989), 437.  doi: 10.1016/0167-6911(89)90080-7.  Google Scholar

[6]

Jean-Michel Coron, On the controllability of $2$-D incompressible perfect fluids,, J. Math. Pures Appl., 75 (1996), 155.   Google Scholar

[7]

Jean-Michel Coron, On the null asymptotic stabilization of the two-dimensional incompressible euler equations in a simply connected domain,, SIAM J. Control Optim., 37 (1999), 1874.  doi: 10.1137/S036301299834140X.  Google Scholar

[8]

Jean-Michel Coron, Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations,, A tribute to J. L. Lions. ESAIM Control Optim. Calc. Var., 8 (2002), 513.  doi: 10.1051/cocv:2002050.  Google Scholar

[9]

Jean-Michel Coron, "Control and Nonlinearity," Mathematical Surveys and Monographs,, American Mathematical Society, (2007).   Google Scholar

[10]

Jean-Michel Coron, On the controllability of nonlinear partial differential equations,, In, (2010), 238.   Google Scholar

[11]

Wijesuriya P. Dayawansa, Clyde F. Martin and Sandra L. Samelson Samelson, Asymptotic stabilization of a generic class of three-dimensional homogeneous quadratic systems,, Systems Control Lett., 24 (1995), 115.  doi: 10.1016/0167-6911(94)00040-3.  Google Scholar

[12]

Ludovic Faubourg and Jean-Baptiste Pomet, Control lyapunov functions for homogeneous "Jurdjevic-Quinn'' systems,, ESAIM Control Optim. Calc. Var., 5 (2000), 293.  doi: 10.1051/cocv:2000112.  Google Scholar

[13]

Olivier Glass, Exact boundary controllability of 3-D euler equation,, ESAIM Control Optim. Calc. Var., 5 (2000), 1.  doi: 10.1051/cocv:2000100.  Google Scholar

[14]

Olivier Glass, Asymptotic stabilizability by stationary feedback of the two-dimensional euler equation: The multiconnected case,, SIAM J. Control Optim., 44 (2005), 1105.  doi: 10.1137/S0363012903431153.  Google Scholar

[15]

Andreea Grigoriu, Implicit lyapunov control for schrödinger equations with dipole and polarizability term,, Proc. of the 50th IEEE Conf. on Decision and Control, (2011).   Google Scholar

[16]

Henry Hermes, Homogeneous coordinates and continuous asymptotically stabilizing feedback controls,, In, (1989), 249.   Google Scholar

[17]

Henry Hermes, Smooth homogeneous asymptotically stabilizing feedback controls,, ESAIM Control Optim. Calc. Var., 2 (1997), 13.  doi: 10.1051/cocv:1997101.  Google Scholar

[18]

Hamadi Jerbi, On the stabilizability of homogeneous systems of odd degree,, ESAIM Control Optim. Calc. Var., 9 (2003), 343.  doi: 10.1051/cocv:2003016.  Google Scholar

[19]

Hassan K. Khalil, "Nonlinear Systems,", Prentice Hall, (2002).  doi: 10.1007/s11071-008-9349-z.  Google Scholar

[20]

Daniel E. Koditschek, Adaptive techniques for mechanical systems,, In, (1987), 259.   Google Scholar

[21]

Pascal Morin, Jean-Baptiste Pomet and Claude Samson, Design of homogeneous time-varying stabilizing control laws for driftless controllable systems via oscillatory approximation of lie brackets in closed loop,, SIAM J. Control Optim., 38 (1999), 22.  doi: 10.1137/S0363012997315427.  Google Scholar

[22]

Pascal Morin and Claude Samson, Time-varying exponential stabilization of a rigid spacecraft with two control torques,, IEEE Trans. Automat. Control, 42 (1997), 528.  doi: 10.1109/9.566663.  Google Scholar

[23]

Laurent Praly, Brigitte d'Andréa-Novel and Jean-Michel Coron, Lyapunov design of stabilizing controllers for cascaded systems,, IEEE Trans. Automat. Control, 36 (1991), 1177.  doi: 10.1109/9.90230.  Google Scholar

[24]

Lionel Rosier, Homogeneous lyapunov function for homogeneous continuous vector fields,, Systems Control Lett., 19 (1992), 467.  doi: 10.1016/0167-6911(92)90078-7.  Google Scholar

[25]

Eduardo D. Sontag, "Mathematical Control Theory," Deterministic finite-dimensional systems, Second edition, Texts in Applied Mathematics,, Springer-Verlag, (1998).   Google Scholar

[26]

John Tsinias, Sufficient Lyapunov-like conditions for stabilization,, Math. Control Signals Systems, 2 (1989), 343.  doi: 10.1007/BF02551276.  Google Scholar

show all references

References:
[1]

Karine Beauchard, Jean Michel Coron, Mazyar Mirrahimi and Pierre Rouchon, Implicit lyapunov control of finite dimensional schrödinger equations,, Systems Control Lett., 56 (2007), 388.  doi: 10.1016/j.sysconle.2006.10.024.  Google Scholar

[2]

Sanjay P. Bhat and Dennis S. Bernstein, Geometric homogeneity with applications to finite-time stability,, Math. Control Signals Systems, 17 (2005), 101.  doi: 10.1007/s00498-005-0151-x.  Google Scholar

[3]

Bernard Bonnard, Contrôlabilité de systemes mécaniques sur les groupes de lie,, (French) [Controllability of mechanical systems on Lie groups] SIAM J. Control Optim., 22 (1984), 711.  doi: 10.1137/0322045.  Google Scholar

[4]

Bernard Bonnard, Ludovic Faubourg and Emmanuel Trélat, "Mécanique CÉleste Et Contrôle Des VÉhicules Spatiaux," (French) [Celestial mechanics and the control of space vehicles] Mathématiques & Applications (Berlin) [Mathematics & Applications],, Springer-Verlag, (2006).   Google Scholar

[5]

Christopher I. Byrnes and Alberto Isidori, New results and examples in nonlinear feedback stabilization,, Systems Control Lett., 12 (1989), 437.  doi: 10.1016/0167-6911(89)90080-7.  Google Scholar

[6]

Jean-Michel Coron, On the controllability of $2$-D incompressible perfect fluids,, J. Math. Pures Appl., 75 (1996), 155.   Google Scholar

[7]

Jean-Michel Coron, On the null asymptotic stabilization of the two-dimensional incompressible euler equations in a simply connected domain,, SIAM J. Control Optim., 37 (1999), 1874.  doi: 10.1137/S036301299834140X.  Google Scholar

[8]

Jean-Michel Coron, Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations,, A tribute to J. L. Lions. ESAIM Control Optim. Calc. Var., 8 (2002), 513.  doi: 10.1051/cocv:2002050.  Google Scholar

[9]

Jean-Michel Coron, "Control and Nonlinearity," Mathematical Surveys and Monographs,, American Mathematical Society, (2007).   Google Scholar

[10]

Jean-Michel Coron, On the controllability of nonlinear partial differential equations,, In, (2010), 238.   Google Scholar

[11]

Wijesuriya P. Dayawansa, Clyde F. Martin and Sandra L. Samelson Samelson, Asymptotic stabilization of a generic class of three-dimensional homogeneous quadratic systems,, Systems Control Lett., 24 (1995), 115.  doi: 10.1016/0167-6911(94)00040-3.  Google Scholar

[12]

Ludovic Faubourg and Jean-Baptiste Pomet, Control lyapunov functions for homogeneous "Jurdjevic-Quinn'' systems,, ESAIM Control Optim. Calc. Var., 5 (2000), 293.  doi: 10.1051/cocv:2000112.  Google Scholar

[13]

Olivier Glass, Exact boundary controllability of 3-D euler equation,, ESAIM Control Optim. Calc. Var., 5 (2000), 1.  doi: 10.1051/cocv:2000100.  Google Scholar

[14]

Olivier Glass, Asymptotic stabilizability by stationary feedback of the two-dimensional euler equation: The multiconnected case,, SIAM J. Control Optim., 44 (2005), 1105.  doi: 10.1137/S0363012903431153.  Google Scholar

[15]

Andreea Grigoriu, Implicit lyapunov control for schrödinger equations with dipole and polarizability term,, Proc. of the 50th IEEE Conf. on Decision and Control, (2011).   Google Scholar

[16]

Henry Hermes, Homogeneous coordinates and continuous asymptotically stabilizing feedback controls,, In, (1989), 249.   Google Scholar

[17]

Henry Hermes, Smooth homogeneous asymptotically stabilizing feedback controls,, ESAIM Control Optim. Calc. Var., 2 (1997), 13.  doi: 10.1051/cocv:1997101.  Google Scholar

[18]

Hamadi Jerbi, On the stabilizability of homogeneous systems of odd degree,, ESAIM Control Optim. Calc. Var., 9 (2003), 343.  doi: 10.1051/cocv:2003016.  Google Scholar

[19]

Hassan K. Khalil, "Nonlinear Systems,", Prentice Hall, (2002).  doi: 10.1007/s11071-008-9349-z.  Google Scholar

[20]

Daniel E. Koditschek, Adaptive techniques for mechanical systems,, In, (1987), 259.   Google Scholar

[21]

Pascal Morin, Jean-Baptiste Pomet and Claude Samson, Design of homogeneous time-varying stabilizing control laws for driftless controllable systems via oscillatory approximation of lie brackets in closed loop,, SIAM J. Control Optim., 38 (1999), 22.  doi: 10.1137/S0363012997315427.  Google Scholar

[22]

Pascal Morin and Claude Samson, Time-varying exponential stabilization of a rigid spacecraft with two control torques,, IEEE Trans. Automat. Control, 42 (1997), 528.  doi: 10.1109/9.566663.  Google Scholar

[23]

Laurent Praly, Brigitte d'Andréa-Novel and Jean-Michel Coron, Lyapunov design of stabilizing controllers for cascaded systems,, IEEE Trans. Automat. Control, 36 (1991), 1177.  doi: 10.1109/9.90230.  Google Scholar

[24]

Lionel Rosier, Homogeneous lyapunov function for homogeneous continuous vector fields,, Systems Control Lett., 19 (1992), 467.  doi: 10.1016/0167-6911(92)90078-7.  Google Scholar

[25]

Eduardo D. Sontag, "Mathematical Control Theory," Deterministic finite-dimensional systems, Second edition, Texts in Applied Mathematics,, Springer-Verlag, (1998).   Google Scholar

[26]

John Tsinias, Sufficient Lyapunov-like conditions for stabilization,, Math. Control Signals Systems, 2 (1989), 343.  doi: 10.1007/BF02551276.  Google Scholar

[1]

Thomas I. Seidman, Houshi Li. A note on stabilization with saturating feedback. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 319-328. doi: 10.3934/dcds.2001.7.319

[2]

Fabio S. Priuli. State constrained patchy feedback stabilization. Mathematical Control & Related Fields, 2015, 5 (1) : 141-163. doi: 10.3934/mcrf.2015.5.141

[3]

Gonzalo Robledo. Feedback stabilization for a chemostat with delayed output. Mathematical Biosciences & Engineering, 2009, 6 (3) : 629-647. doi: 10.3934/mbe.2009.6.629

[4]

Tobias Breiten, Karl Kunisch. Boundary feedback stabilization of the monodomain equations. Mathematical Control & Related Fields, 2017, 7 (3) : 369-391. doi: 10.3934/mcrf.2017013

[5]

Shui-Hung Hou, Qing-Xu Yan. Nonlinear locally distributed feedback stabilization. Journal of Industrial & Management Optimization, 2008, 4 (1) : 67-79. doi: 10.3934/jimo.2008.4.67

[6]

Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger. Feedback stabilization of a coupled string-beam system. Networks & Heterogeneous Media, 2009, 4 (1) : 19-34. doi: 10.3934/nhm.2009.4.19

[7]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[8]

Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085

[9]

Martin Gugat, Mario Sigalotti. Stars of vibrating strings: Switching boundary feedback stabilization. Networks & Heterogeneous Media, 2010, 5 (2) : 299-314. doi: 10.3934/nhm.2010.5.299

[10]

Lorena Bociu, Steven Derochers, Daniel Toundykov. Feedback stabilization of a linear hydro-elastic system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1107-1132. doi: 10.3934/dcdsb.2018144

[11]

Kaïs Ammari, Denis Mercier. Boundary feedback stabilization of a chain of serially connected strings. Evolution Equations & Control Theory, 2015, 4 (1) : 1-19. doi: 10.3934/eect.2015.4.1

[12]

Elena-Alexandra Melnig. Internal feedback stabilization for parabolic systems coupled in zero or first order terms. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020069

[13]

Ruth F. Curtain, George Weiss. Strong stabilization of (almost) impedance passive systems by static output feedback. Mathematical Control & Related Fields, 2019, 9 (4) : 643-671. doi: 10.3934/mcrf.2019045

[14]

Martin Gugat, Markus Dick. Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction. Mathematical Control & Related Fields, 2011, 1 (4) : 469-491. doi: 10.3934/mcrf.2011.1.469

[15]

Sanmei Zhu, Jun-e Feng, Jianli Zhao. State feedback for set stabilization of Markovian jump Boolean control networks. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020413

[16]

Cătălin-George Lefter, Elena-Alexandra Melnig. Feedback stabilization with one simultaneous control for systems of parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 777-787. doi: 10.3934/mcrf.2018034

[17]

Abdelkarim Kelleche, Nasser-Eddine Tatar. Existence and stabilization of a Kirchhoff moving string with a delay in the boundary or in the internal feedback. Evolution Equations & Control Theory, 2018, 7 (4) : 599-616. doi: 10.3934/eect.2018029

[18]

Vanessa Baumgärtner, Simone Göttlich, Stephan Knapp. Feedback stabilization for a coupled PDE-ODE production system. Mathematical Control & Related Fields, 2020, 10 (2) : 405-424. doi: 10.3934/mcrf.2020003

[19]

Qingwen Hu, Huan Zhang. Stabilization of turning processes using spindle feedback with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4329-4360. doi: 10.3934/dcdsb.2018167

[20]

Ionuţ Munteanu. Exponential stabilization of the stochastic Burgers equation by boundary proportional feedback. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2173-2185. doi: 10.3934/dcds.2019091

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]