September  2013, 3(3): 323-345. doi: 10.3934/mcrf.2013.3.323

Asymptotic stability of uniformly bounded nonlinear switched systems

1. 

Université de Rouen, Laboratoire de Mathématiques Raphaël Salem, CNRS, UMR 6085, Avenue de luniversité, BP 12, 76801 Saint-Etienne du Rouvray Cedex, France, France

Received  October 2012 Revised  March 2013 Published  September 2013

We study the asymptotic stability properties of nonlinear switched systems under the assumption of the existence of a common weak Lyapunov function.
    We consider the class of nonchaotic inputs, which generalize the different notions of inputs with dwell-time, and the class of general ones. For each of them we provide some sufficient conditions for asymptotic stability in terms of the geometry of certain sets.
Citation: Philippe Jouan, Said Naciri. Asymptotic stability of uniformly bounded nonlinear switched systems. Mathematical Control & Related Fields, 2013, 3 (3) : 323-345. doi: 10.3934/mcrf.2013.3.323
References:
[1]

A. Yu. Aleksandrov, A. A. Kosov and A. V. Platonov, On the asymptotic stability of switched homogeneous systems,, Systems & Control Letters, 61 (2012), 127.  doi: 10.1016/j.sysconle.2011.10.008.  Google Scholar

[2]

D. Angeli, B. Ingalls, E. D. Sontag and Y. Wang, Uniform global asymptotic stability of differential inclusions,, Journal of Dynamical and Control Systems, 10 (2004), 391.  doi: 10.1023/B:JODS.0000034437.54937.7f.  Google Scholar

[3]

A. Bacciotti and L. Mazzi, An invariance principle for nonlinear switched systems,, Systems & Control Letters, 54 (2005), 1109.  doi: 10.1016/j.sysconle.2005.04.003.  Google Scholar

[4]

M. Balde and P. Jouan, Geometry of the limit sets of linear switched systems,, SIAM J. Optimization and Control, 49 (2011), 1048.  doi: 10.1137/100793153.  Google Scholar

[5]

M. Balde and P. Jouan, Stability of linear switched systems with quadratic bounds and observability of bilinear systems, preprint,, , ().   Google Scholar

[6]

U. Boscain, G. Charlot and M. Sigalotti, Stability of planar nonlinear switched systems,, Discrete and Continuous Dynamical Systems, 15 (2006), 415.  doi: 10.3934/dcds.2006.15.415.  Google Scholar

[7]

J. Carr, "Applications of Centre Manifold Theory,", Applied Mathematical Sciences, (1981).   Google Scholar

[8]

J. Hespanha, Uniform stability of switched linear systems: Extensions of lasalle's invariance principle,, IEEE Trans. Automat. Control, 49 (2004), 470.  doi: 10.1109/TAC.2004.825641.  Google Scholar

[9]

J. L. Mancilla-Aguilar and R. A. García, An extension of lasalle's invariance principle for switched systems,, Systems & Control Letters, 55 (2006), 376.  doi: 10.1016/j.sysconle.2005.07.009.  Google Scholar

[10]

C. Marle, "Systèmes Dynamiques: Une Introduction,", Ellipses, (2003).   Google Scholar

[11]

U. Serres, J.-C. Vivalda and P. Riedinger, On the convergence of linear switched systems,, IEEE Trans. Automat. Control, 56 (2011), 320.  doi: 10.1109/TAC.2010.2054950.  Google Scholar

[12]

E. D. Sontag, "Mathematical Control Theory. Deterministic Finite-Dimensional Systems,", 2nd edition, (1998).   Google Scholar

show all references

References:
[1]

A. Yu. Aleksandrov, A. A. Kosov and A. V. Platonov, On the asymptotic stability of switched homogeneous systems,, Systems & Control Letters, 61 (2012), 127.  doi: 10.1016/j.sysconle.2011.10.008.  Google Scholar

[2]

D. Angeli, B. Ingalls, E. D. Sontag and Y. Wang, Uniform global asymptotic stability of differential inclusions,, Journal of Dynamical and Control Systems, 10 (2004), 391.  doi: 10.1023/B:JODS.0000034437.54937.7f.  Google Scholar

[3]

A. Bacciotti and L. Mazzi, An invariance principle for nonlinear switched systems,, Systems & Control Letters, 54 (2005), 1109.  doi: 10.1016/j.sysconle.2005.04.003.  Google Scholar

[4]

M. Balde and P. Jouan, Geometry of the limit sets of linear switched systems,, SIAM J. Optimization and Control, 49 (2011), 1048.  doi: 10.1137/100793153.  Google Scholar

[5]

M. Balde and P. Jouan, Stability of linear switched systems with quadratic bounds and observability of bilinear systems, preprint,, , ().   Google Scholar

[6]

U. Boscain, G. Charlot and M. Sigalotti, Stability of planar nonlinear switched systems,, Discrete and Continuous Dynamical Systems, 15 (2006), 415.  doi: 10.3934/dcds.2006.15.415.  Google Scholar

[7]

J. Carr, "Applications of Centre Manifold Theory,", Applied Mathematical Sciences, (1981).   Google Scholar

[8]

J. Hespanha, Uniform stability of switched linear systems: Extensions of lasalle's invariance principle,, IEEE Trans. Automat. Control, 49 (2004), 470.  doi: 10.1109/TAC.2004.825641.  Google Scholar

[9]

J. L. Mancilla-Aguilar and R. A. García, An extension of lasalle's invariance principle for switched systems,, Systems & Control Letters, 55 (2006), 376.  doi: 10.1016/j.sysconle.2005.07.009.  Google Scholar

[10]

C. Marle, "Systèmes Dynamiques: Une Introduction,", Ellipses, (2003).   Google Scholar

[11]

U. Serres, J.-C. Vivalda and P. Riedinger, On the convergence of linear switched systems,, IEEE Trans. Automat. Control, 56 (2011), 320.  doi: 10.1109/TAC.2010.2054950.  Google Scholar

[12]

E. D. Sontag, "Mathematical Control Theory. Deterministic Finite-Dimensional Systems,", 2nd edition, (1998).   Google Scholar

[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[2]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[3]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[4]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[5]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[6]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[7]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[8]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[9]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[10]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[11]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[12]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[13]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[14]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[15]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[16]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[17]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[18]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[19]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[20]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]