September  2013, 3(3): 323-345. doi: 10.3934/mcrf.2013.3.323

Asymptotic stability of uniformly bounded nonlinear switched systems

1. 

Université de Rouen, Laboratoire de Mathématiques Raphaël Salem, CNRS, UMR 6085, Avenue de luniversité, BP 12, 76801 Saint-Etienne du Rouvray Cedex, France, France

Received  October 2012 Revised  March 2013 Published  September 2013

We study the asymptotic stability properties of nonlinear switched systems under the assumption of the existence of a common weak Lyapunov function.
    We consider the class of nonchaotic inputs, which generalize the different notions of inputs with dwell-time, and the class of general ones. For each of them we provide some sufficient conditions for asymptotic stability in terms of the geometry of certain sets.
Citation: Philippe Jouan, Said Naciri. Asymptotic stability of uniformly bounded nonlinear switched systems. Mathematical Control & Related Fields, 2013, 3 (3) : 323-345. doi: 10.3934/mcrf.2013.3.323
References:
[1]

A. Yu. Aleksandrov, A. A. Kosov and A. V. Platonov, On the asymptotic stability of switched homogeneous systems,, Systems & Control Letters, 61 (2012), 127.  doi: 10.1016/j.sysconle.2011.10.008.  Google Scholar

[2]

D. Angeli, B. Ingalls, E. D. Sontag and Y. Wang, Uniform global asymptotic stability of differential inclusions,, Journal of Dynamical and Control Systems, 10 (2004), 391.  doi: 10.1023/B:JODS.0000034437.54937.7f.  Google Scholar

[3]

A. Bacciotti and L. Mazzi, An invariance principle for nonlinear switched systems,, Systems & Control Letters, 54 (2005), 1109.  doi: 10.1016/j.sysconle.2005.04.003.  Google Scholar

[4]

M. Balde and P. Jouan, Geometry of the limit sets of linear switched systems,, SIAM J. Optimization and Control, 49 (2011), 1048.  doi: 10.1137/100793153.  Google Scholar

[5]

M. Balde and P. Jouan, Stability of linear switched systems with quadratic bounds and observability of bilinear systems, preprint,, , ().   Google Scholar

[6]

U. Boscain, G. Charlot and M. Sigalotti, Stability of planar nonlinear switched systems,, Discrete and Continuous Dynamical Systems, 15 (2006), 415.  doi: 10.3934/dcds.2006.15.415.  Google Scholar

[7]

J. Carr, "Applications of Centre Manifold Theory,", Applied Mathematical Sciences, (1981).   Google Scholar

[8]

J. Hespanha, Uniform stability of switched linear systems: Extensions of lasalle's invariance principle,, IEEE Trans. Automat. Control, 49 (2004), 470.  doi: 10.1109/TAC.2004.825641.  Google Scholar

[9]

J. L. Mancilla-Aguilar and R. A. García, An extension of lasalle's invariance principle for switched systems,, Systems & Control Letters, 55 (2006), 376.  doi: 10.1016/j.sysconle.2005.07.009.  Google Scholar

[10]

C. Marle, "Systèmes Dynamiques: Une Introduction,", Ellipses, (2003).   Google Scholar

[11]

U. Serres, J.-C. Vivalda and P. Riedinger, On the convergence of linear switched systems,, IEEE Trans. Automat. Control, 56 (2011), 320.  doi: 10.1109/TAC.2010.2054950.  Google Scholar

[12]

E. D. Sontag, "Mathematical Control Theory. Deterministic Finite-Dimensional Systems,", 2nd edition, (1998).   Google Scholar

show all references

References:
[1]

A. Yu. Aleksandrov, A. A. Kosov and A. V. Platonov, On the asymptotic stability of switched homogeneous systems,, Systems & Control Letters, 61 (2012), 127.  doi: 10.1016/j.sysconle.2011.10.008.  Google Scholar

[2]

D. Angeli, B. Ingalls, E. D. Sontag and Y. Wang, Uniform global asymptotic stability of differential inclusions,, Journal of Dynamical and Control Systems, 10 (2004), 391.  doi: 10.1023/B:JODS.0000034437.54937.7f.  Google Scholar

[3]

A. Bacciotti and L. Mazzi, An invariance principle for nonlinear switched systems,, Systems & Control Letters, 54 (2005), 1109.  doi: 10.1016/j.sysconle.2005.04.003.  Google Scholar

[4]

M. Balde and P. Jouan, Geometry of the limit sets of linear switched systems,, SIAM J. Optimization and Control, 49 (2011), 1048.  doi: 10.1137/100793153.  Google Scholar

[5]

M. Balde and P. Jouan, Stability of linear switched systems with quadratic bounds and observability of bilinear systems, preprint,, , ().   Google Scholar

[6]

U. Boscain, G. Charlot and M. Sigalotti, Stability of planar nonlinear switched systems,, Discrete and Continuous Dynamical Systems, 15 (2006), 415.  doi: 10.3934/dcds.2006.15.415.  Google Scholar

[7]

J. Carr, "Applications of Centre Manifold Theory,", Applied Mathematical Sciences, (1981).   Google Scholar

[8]

J. Hespanha, Uniform stability of switched linear systems: Extensions of lasalle's invariance principle,, IEEE Trans. Automat. Control, 49 (2004), 470.  doi: 10.1109/TAC.2004.825641.  Google Scholar

[9]

J. L. Mancilla-Aguilar and R. A. García, An extension of lasalle's invariance principle for switched systems,, Systems & Control Letters, 55 (2006), 376.  doi: 10.1016/j.sysconle.2005.07.009.  Google Scholar

[10]

C. Marle, "Systèmes Dynamiques: Une Introduction,", Ellipses, (2003).   Google Scholar

[11]

U. Serres, J.-C. Vivalda and P. Riedinger, On the convergence of linear switched systems,, IEEE Trans. Automat. Control, 56 (2011), 320.  doi: 10.1109/TAC.2010.2054950.  Google Scholar

[12]

E. D. Sontag, "Mathematical Control Theory. Deterministic Finite-Dimensional Systems,", 2nd edition, (1998).   Google Scholar

[1]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[2]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[3]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[4]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[5]

Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021070

[6]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[7]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[8]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[9]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[10]

Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216

[11]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[12]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[13]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[14]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[15]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[16]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[17]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[18]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[19]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[20]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]