September  2013, 3(3): 347-374. doi: 10.3934/mcrf.2013.3.347

Affine-quadratic problems on Lie groups

1. 

Department of Mathematics, University of Toronto, 40 St. George st, Toronto, Canada

Received  December 2012 Revised  March 2013 Published  September 2013

This paper focuses on a class of left invariant variational problems on a Lie group$\ G\ $whose Lie algebra $\mathfrak{g}$ admits Cartan decomposition $ \mathfrak{g}=\mathfrak{p}+\mathfrak{k}$ with the usual Lie algebraic conditions \begin{equation*} \lbrack \mathfrak{p},\mathfrak{p]\subseteq k\ },\ \mathfrak{[p},\mathfrak{ k]\subseteq p},\mathfrak{\ [k},\mathfrak{k]\subseteq k.} \end{equation*}         The Maximum Principle of optimal control leads to the Hamiltonians $H$ on $ \mathfrak{g\ }$that admit spectral parameter representations with important contributions to the theory of integrable Hamiltonian systems. Particular cases will be singled out that provides natural explanations for the classical results of Fock and Moser linking Kepler's problem to the geodesics on spaces of constant curvature, C.L. Jacobi's geodesic problem on an ellipsoid and J.Moser's work on integrability based on isospectral methods. The paper also shows the relevance of this class of Hamiltonians to the elastic curves on spaces of constant curvature.
Citation: Velimir Jurdjevic. Affine-quadratic problems on Lie groups. Mathematical Control & Related Fields, 2013, 3 (3) : 347-374. doi: 10.3934/mcrf.2013.3.347
References:
[1]

A. Agrachev and Y. Sachkov, "Control Theory from the Geometric Point of View,", Encyclopedia of Mathematical Sciences, (2004).   Google Scholar

[2]

D. V. Anosov, A note on the Kepler problem,, Jour. Dynamical and Control Syst., 8 (2002), 413.  doi: 10.1023/A:1016386605889.  Google Scholar

[3]

V. Arnold, "Les Méthodes Mathématiques de la Mécanique Classique,", Traduction francaise, (1974).   Google Scholar

[4]

J. Cheeger and D. Ebin, "Comparison Theorems in Riemannian Geometry,", Revised reprint of the 1975 original. AMS Chelsea Publishing, (1975).   Google Scholar

[5]

A. V. Bolsinov, A criterion for the completeness of a family of functions in involution that is constructed by the argument translation method,, (Russian) Dokl. Akad. Nauk SSSR, 301 (1988), 1037.   Google Scholar

[6]

A. V. Bolsinov and B. Jovanović, Complete involutive algebras of functions on cotangent bundles of homogeneous spaces,, Math. Zeit., 246 (2004), 213.  doi: 10.1007/s00209-003-0596-x.  Google Scholar

[7]

B. Bonnard, V. Jurdjevic, I. K. Kupka and G. Sallet, Transitivity of families of invariant vector fields on semi-direct products of lie groups,, Trans. Amer. Math. Soc., 271 (1982), 525.  doi: 10.1090/S0002-9947-1982-0654849-4.  Google Scholar

[8]

P. Eberlein, "Geometry of Nonpositively Curved Manifolds,", Chicago Lectures in Mathematics. University of Chicago Press, (1996).   Google Scholar

[9]

S. Helgason, "Differential Geometry, Lie Groups, and Symmetric Spaces,", Pure and Applied Mathematics, (1978).   Google Scholar

[10]

Y. N. Fedorov and B. Jovanovic, Geodesic flows and newmann systems on steifel varieties,, Geometry and Integrability, ().   Google Scholar

[11]

V. A. Fock, The hydrogen atom and non-euclidean geometry,, Izv. Akad. Nauk SSSR, (1935).   Google Scholar

[12]

B. S. Goh, Necessary conditions for singular extremals involving multiple control variables,, SIAM J. Control, 4 (1966), 716.  doi: 10.1137/0304052.  Google Scholar

[13]

P. Griffiths, "Exterior Differential Calculus and the Calculus of Variations,", Birkhauser, (1992).   Google Scholar

[14]

C. G. J. Jacobi, "Vorlesungen Uber Dynamic,", Druck und Verlag von G. Reimer, (1884).   Google Scholar

[15]

V. Jurdjevic, "Geometric Control Theory,", Cambridge Studies in Advanced Mathematics 52, (1997).   Google Scholar

[16]

V. Jurdjevic, Hamiltonian point of view of non-euclidean geometry and elliptic functions,, System and Control Letters, 43 (2005), 25.  doi: 10.1016/S0167-6911(01)00093-7.  Google Scholar

[17]

V. Jurdjevic, Optimal control, geometry and mechanics,, Mathematical Control Theory, (1999), 227.   Google Scholar

[18]

V. Jurdjevic and F. Monroy-Perez, Hamiltonian systems on Lie groups: Elastic curves, tops and constrained geodesic problems,, in, (2002), 3.  doi: 10.1142/9789812778079_0001.  Google Scholar

[19]

V. Jurdjevic, Optimal control on Lie groups and integrable hamiltonian systems,, Regular and Chaotic Dyn., 16 (2011), 514.  doi: 10.1134/S156035471105008X.  Google Scholar

[20]

V. Jurdjevic, Integrable Hamiltonian systems on complex Lie groups,, Mem. Amer. Math. Soc., 178 (2005).  doi: 10.1090/memo/0838.  Google Scholar

[21]

V. Jurdjevic, The elliptic geodesic problem on the sphere,, in preparation., ().   Google Scholar

[22]

H. Knorrer, Geodesics on quadrics and a mechanical problem of C. Newmann,, J. Reine Angew. Math., 334 (1982), 69.  doi: 10.1515/crll.1982.334.69.  Google Scholar

[23]

J. Langer and D. Singer, Knotted elastic curves in $\mathbbR ^3$,, J. London. Math. Soc., 30 (1984), 512.  doi: 10.1112/jlms/s2-30.3.512.  Google Scholar

[24]

P. Lee, "Kepler's Problem,", Master's thesis, (2004).   Google Scholar

[25]

J. Moser, Regularization of Kepler's problem and the averaging method on a manifold,, Comm. Pure Appl. Math., 23 (1970), 609.  doi: 10.1002/cpa.3160230406.  Google Scholar

[26]

J. Moser, Geometry of quadrics and spectral theory,, The Chern Symposium 1979 (Proc. Internat. Sympos., (1979), 147.   Google Scholar

[27]

J. Moser, "Integrable Hamiltonian Systems and Spectral Theory,", Lezioni Fermiane. [Fermi Lectures] Scuola Normale Superiore, (1983).   Google Scholar

[28]

C. Newmann, De probleme quodam mechanico, quod ad primam integralium ultra-ellipticoram classem revocatum,, J. Reine Angew. Math., 56 (1856), 345.   Google Scholar

[29]

Y. Osipov, The Kepler problem and geodesic flows in spaces of constant curvature,, Celestial Mechanics, 16 (1977), 191.  doi: 10.1007/BF01228600.  Google Scholar

[30]

A. M. Perelomov, "Integrable Systems Of Classical Mechanics And Lie Algebras, Vol. I,", Translated from the Russian by A. G. Reyman [A. G. Reiman]. Birkhauser Verlag, (1990).  doi: 10.1007/978-3-0348-9257-5.  Google Scholar

[31]

T. Ratiu, The C. Newmann problem as a completely integrable system on an adjoint orbit,, Trans. Amer. Math. Soc., 264 (1981), 321.  doi: 10.2307/1998542.  Google Scholar

[32]

A. G. Reyman, Integrable hamiltonian systems connected with graded Lie algebras,, J. Sov. Math., 19 (1982), 1507.   Google Scholar

[33]

A. G. Reyman and S. Tian- Shansky, Group theoretic methods in the theory of finite dimensional integrable systems,, Encyclopaedia of Mathematical Sciences, (1994).  doi: 10.1007/978-3-642-57884-7.  Google Scholar

show all references

References:
[1]

A. Agrachev and Y. Sachkov, "Control Theory from the Geometric Point of View,", Encyclopedia of Mathematical Sciences, (2004).   Google Scholar

[2]

D. V. Anosov, A note on the Kepler problem,, Jour. Dynamical and Control Syst., 8 (2002), 413.  doi: 10.1023/A:1016386605889.  Google Scholar

[3]

V. Arnold, "Les Méthodes Mathématiques de la Mécanique Classique,", Traduction francaise, (1974).   Google Scholar

[4]

J. Cheeger and D. Ebin, "Comparison Theorems in Riemannian Geometry,", Revised reprint of the 1975 original. AMS Chelsea Publishing, (1975).   Google Scholar

[5]

A. V. Bolsinov, A criterion for the completeness of a family of functions in involution that is constructed by the argument translation method,, (Russian) Dokl. Akad. Nauk SSSR, 301 (1988), 1037.   Google Scholar

[6]

A. V. Bolsinov and B. Jovanović, Complete involutive algebras of functions on cotangent bundles of homogeneous spaces,, Math. Zeit., 246 (2004), 213.  doi: 10.1007/s00209-003-0596-x.  Google Scholar

[7]

B. Bonnard, V. Jurdjevic, I. K. Kupka and G. Sallet, Transitivity of families of invariant vector fields on semi-direct products of lie groups,, Trans. Amer. Math. Soc., 271 (1982), 525.  doi: 10.1090/S0002-9947-1982-0654849-4.  Google Scholar

[8]

P. Eberlein, "Geometry of Nonpositively Curved Manifolds,", Chicago Lectures in Mathematics. University of Chicago Press, (1996).   Google Scholar

[9]

S. Helgason, "Differential Geometry, Lie Groups, and Symmetric Spaces,", Pure and Applied Mathematics, (1978).   Google Scholar

[10]

Y. N. Fedorov and B. Jovanovic, Geodesic flows and newmann systems on steifel varieties,, Geometry and Integrability, ().   Google Scholar

[11]

V. A. Fock, The hydrogen atom and non-euclidean geometry,, Izv. Akad. Nauk SSSR, (1935).   Google Scholar

[12]

B. S. Goh, Necessary conditions for singular extremals involving multiple control variables,, SIAM J. Control, 4 (1966), 716.  doi: 10.1137/0304052.  Google Scholar

[13]

P. Griffiths, "Exterior Differential Calculus and the Calculus of Variations,", Birkhauser, (1992).   Google Scholar

[14]

C. G. J. Jacobi, "Vorlesungen Uber Dynamic,", Druck und Verlag von G. Reimer, (1884).   Google Scholar

[15]

V. Jurdjevic, "Geometric Control Theory,", Cambridge Studies in Advanced Mathematics 52, (1997).   Google Scholar

[16]

V. Jurdjevic, Hamiltonian point of view of non-euclidean geometry and elliptic functions,, System and Control Letters, 43 (2005), 25.  doi: 10.1016/S0167-6911(01)00093-7.  Google Scholar

[17]

V. Jurdjevic, Optimal control, geometry and mechanics,, Mathematical Control Theory, (1999), 227.   Google Scholar

[18]

V. Jurdjevic and F. Monroy-Perez, Hamiltonian systems on Lie groups: Elastic curves, tops and constrained geodesic problems,, in, (2002), 3.  doi: 10.1142/9789812778079_0001.  Google Scholar

[19]

V. Jurdjevic, Optimal control on Lie groups and integrable hamiltonian systems,, Regular and Chaotic Dyn., 16 (2011), 514.  doi: 10.1134/S156035471105008X.  Google Scholar

[20]

V. Jurdjevic, Integrable Hamiltonian systems on complex Lie groups,, Mem. Amer. Math. Soc., 178 (2005).  doi: 10.1090/memo/0838.  Google Scholar

[21]

V. Jurdjevic, The elliptic geodesic problem on the sphere,, in preparation., ().   Google Scholar

[22]

H. Knorrer, Geodesics on quadrics and a mechanical problem of C. Newmann,, J. Reine Angew. Math., 334 (1982), 69.  doi: 10.1515/crll.1982.334.69.  Google Scholar

[23]

J. Langer and D. Singer, Knotted elastic curves in $\mathbbR ^3$,, J. London. Math. Soc., 30 (1984), 512.  doi: 10.1112/jlms/s2-30.3.512.  Google Scholar

[24]

P. Lee, "Kepler's Problem,", Master's thesis, (2004).   Google Scholar

[25]

J. Moser, Regularization of Kepler's problem and the averaging method on a manifold,, Comm. Pure Appl. Math., 23 (1970), 609.  doi: 10.1002/cpa.3160230406.  Google Scholar

[26]

J. Moser, Geometry of quadrics and spectral theory,, The Chern Symposium 1979 (Proc. Internat. Sympos., (1979), 147.   Google Scholar

[27]

J. Moser, "Integrable Hamiltonian Systems and Spectral Theory,", Lezioni Fermiane. [Fermi Lectures] Scuola Normale Superiore, (1983).   Google Scholar

[28]

C. Newmann, De probleme quodam mechanico, quod ad primam integralium ultra-ellipticoram classem revocatum,, J. Reine Angew. Math., 56 (1856), 345.   Google Scholar

[29]

Y. Osipov, The Kepler problem and geodesic flows in spaces of constant curvature,, Celestial Mechanics, 16 (1977), 191.  doi: 10.1007/BF01228600.  Google Scholar

[30]

A. M. Perelomov, "Integrable Systems Of Classical Mechanics And Lie Algebras, Vol. I,", Translated from the Russian by A. G. Reyman [A. G. Reiman]. Birkhauser Verlag, (1990).  doi: 10.1007/978-3-0348-9257-5.  Google Scholar

[31]

T. Ratiu, The C. Newmann problem as a completely integrable system on an adjoint orbit,, Trans. Amer. Math. Soc., 264 (1981), 321.  doi: 10.2307/1998542.  Google Scholar

[32]

A. G. Reyman, Integrable hamiltonian systems connected with graded Lie algebras,, J. Sov. Math., 19 (1982), 1507.   Google Scholar

[33]

A. G. Reyman and S. Tian- Shansky, Group theoretic methods in the theory of finite dimensional integrable systems,, Encyclopaedia of Mathematical Sciences, (1994).  doi: 10.1007/978-3-642-57884-7.  Google Scholar

[1]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[2]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[3]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[4]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[5]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[6]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[7]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[8]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[9]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[10]

Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307

[11]

Hongliang Chang, Yin Chen, Runxuan Zhang. A generalization on derivations of Lie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2020124

[12]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[13]

Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008

[14]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[15]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[16]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[17]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[18]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[19]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[20]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (87)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]