September  2013, 3(3): 347-374. doi: 10.3934/mcrf.2013.3.347

Affine-quadratic problems on Lie groups

1. 

Department of Mathematics, University of Toronto, 40 St. George st, Toronto, Canada

Received  December 2012 Revised  March 2013 Published  September 2013

This paper focuses on a class of left invariant variational problems on a Lie group$\ G\ $whose Lie algebra $\mathfrak{g}$ admits Cartan decomposition $ \mathfrak{g}=\mathfrak{p}+\mathfrak{k}$ with the usual Lie algebraic conditions \begin{equation*} \lbrack \mathfrak{p},\mathfrak{p]\subseteq k\ },\ \mathfrak{[p},\mathfrak{ k]\subseteq p},\mathfrak{\ [k},\mathfrak{k]\subseteq k.} \end{equation*}         The Maximum Principle of optimal control leads to the Hamiltonians $H$ on $ \mathfrak{g\ }$that admit spectral parameter representations with important contributions to the theory of integrable Hamiltonian systems. Particular cases will be singled out that provides natural explanations for the classical results of Fock and Moser linking Kepler's problem to the geodesics on spaces of constant curvature, C.L. Jacobi's geodesic problem on an ellipsoid and J.Moser's work on integrability based on isospectral methods. The paper also shows the relevance of this class of Hamiltonians to the elastic curves on spaces of constant curvature.
Citation: Velimir Jurdjevic. Affine-quadratic problems on Lie groups. Mathematical Control and Related Fields, 2013, 3 (3) : 347-374. doi: 10.3934/mcrf.2013.3.347
References:
[1]

A. Agrachev and Y. Sachkov, "Control Theory from the Geometric Point of View," Encyclopedia of Mathematical Sciences, 87. Control Theory and Optimization, II. Springer-Verlag, Berlin, 2004.

[2]

D. V. Anosov, A note on the Kepler problem, Jour. Dynamical and Control Syst., 8 (2002), 413-442. doi: 10.1023/A:1016386605889.

[3]

V. Arnold, "Les Méthodes Mathématiques de la Mécanique Classique," Traduction francaise, Editions Mir, 1974.

[4]

J. Cheeger and D. Ebin, "Comparison Theorems in Riemannian Geometry," Revised reprint of the 1975 original. AMS Chelsea Publishing, Providence, RI, 2008.

[5]

A. V. Bolsinov, A criterion for the completeness of a family of functions in involution that is constructed by the argument translation method, (Russian) Dokl. Akad. Nauk SSSR, 301 (1988), 1037-1040; translation in Soviet Math. Dokl., 38 (1989), 161-165.

[6]

A. V. Bolsinov and B. Jovanović, Complete involutive algebras of functions on cotangent bundles of homogeneous spaces, Math. Zeit., 246 (2004), 213-236. doi: 10.1007/s00209-003-0596-x.

[7]

B. Bonnard, V. Jurdjevic, I. K. Kupka and G. Sallet, Transitivity of families of invariant vector fields on semi-direct products of lie groups, Trans. Amer. Math. Soc., 271 (1982), 525-535. doi: 10.1090/S0002-9947-1982-0654849-4.

[8]

P. Eberlein, "Geometry of Nonpositively Curved Manifolds," Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1996.

[9]

S. Helgason, "Differential Geometry, Lie Groups, and Symmetric Spaces," Pure and Applied Mathematics, 80. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978.

[10]

Y. N. Fedorov and B. Jovanovic, Geodesic flows and newmann systems on steifel varieties, Geometry and Integrability, a preprint.

[11]

V. A. Fock, The hydrogen atom and non-euclidean geometry, Izv. Akad. Nauk SSSR, Ser Fizika 8, 1935.

[12]

B. S. Goh, Necessary conditions for singular extremals involving multiple control variables, SIAM J. Control, 4 (1966), 716-731. doi: 10.1137/0304052.

[13]

P. Griffiths, "Exterior Differential Calculus and the Calculus of Variations," Birkhauser, Boston, 1992.

[14]

C. G. J. Jacobi, "Vorlesungen Uber Dynamic," Druck und Verlag von G. Reimer, Berlin, 1884.

[15]

V. Jurdjevic, "Geometric Control Theory," Cambridge Studies in Advanced Mathematics 52, Cambridge University Press, 1997.

[16]

V. Jurdjevic, Hamiltonian point of view of non-euclidean geometry and elliptic functions, System and Control Letters, Lie theory and its applications in control (Würzburg, 1999), 43 (2005), 25-41. doi: 10.1016/S0167-6911(01)00093-7.

[17]

V. Jurdjevic, Optimal control, geometry and mechanics, Mathematical Control Theory, 227-267, Springer, New York, 1999.

[18]

V. Jurdjevic and F. Monroy-Perez, Hamiltonian systems on Lie groups: Elastic curves, tops and constrained geodesic problems, in "Non-Linear Control Theory and its Applications," World Scientific Publishing Co., Singapore 2002, 3-52. doi: 10.1142/9789812778079_0001.

[19]

V. Jurdjevic, Optimal control on Lie groups and integrable hamiltonian systems, Regular and Chaotic Dyn., 16 (2011), 514-535. doi: 10.1134/S156035471105008X.

[20]

V. Jurdjevic, Integrable Hamiltonian systems on complex Lie groups, Mem. Amer. Math. Soc., 178 (2005), viii+133 pp. doi: 10.1090/memo/0838.

[21]

V. Jurdjevic, The elliptic geodesic problem on the sphere, in preparation.

[22]

H. Knorrer, Geodesics on quadrics and a mechanical problem of C. Newmann, J. Reine Angew. Math., 334 (1982), 69-78. doi: 10.1515/crll.1982.334.69.

[23]

J. Langer and D. Singer, Knotted elastic curves in $\mathbbR ^3$, J. London. Math. Soc., (2), 30 (1984), 512-520. doi: 10.1112/jlms/s2-30.3.512.

[24]

P. Lee, "Kepler's Problem," Master's thesis, University of Toronto, 2004.

[25]

J. Moser, Regularization of Kepler's problem and the averaging method on a manifold, Comm. Pure Appl. Math., 23 (1970), 609-636. doi: 10.1002/cpa.3160230406.

[26]

J. Moser, Geometry of quadrics and spectral theory, The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), 147-188, Springer, New York-Berlin, 1980.

[27]

J. Moser, "Integrable Hamiltonian Systems and Spectral Theory," Lezioni Fermiane. [Fermi Lectures] Scuola Normale Superiore, Pisa, 1983.

[28]

C. Newmann, De probleme quodam mechanico, quod ad primam integralium ultra-ellipticoram classem revocatum, J. Reine Angew. Math., 56 (1856), 345-378.

[29]

Y. Osipov, The Kepler problem and geodesic flows in spaces of constant curvature, Celestial Mechanics, 16 (1977), 191-208. doi: 10.1007/BF01228600.

[30]

A. M. Perelomov, "Integrable Systems Of Classical Mechanics And Lie Algebras, Vol. I," Translated from the Russian by A. G. Reyman [A. G. Reiman]. Birkhauser Verlag, Basel, 1990. doi: 10.1007/978-3-0348-9257-5.

[31]

T. Ratiu, The C. Newmann problem as a completely integrable system on an adjoint orbit, Trans. Amer. Math. Soc., 264 (1981), 321-329. doi: 10.2307/1998542.

[32]

A. G. Reyman, Integrable hamiltonian systems connected with graded Lie algebras, J. Sov. Math., 19 (1982), 1507-1545.

[33]

A. G. Reyman and S. Tian- Shansky, Group theoretic methods in the theory of finite dimensional integrable systems, Encyclopaedia of Mathematical Sciences, edited by V. I. Arnold and S. P. Novikov, Part II, Chapter 2, Springer-Verlag, 1994. doi: 10.1007/978-3-642-57884-7.

show all references

References:
[1]

A. Agrachev and Y. Sachkov, "Control Theory from the Geometric Point of View," Encyclopedia of Mathematical Sciences, 87. Control Theory and Optimization, II. Springer-Verlag, Berlin, 2004.

[2]

D. V. Anosov, A note on the Kepler problem, Jour. Dynamical and Control Syst., 8 (2002), 413-442. doi: 10.1023/A:1016386605889.

[3]

V. Arnold, "Les Méthodes Mathématiques de la Mécanique Classique," Traduction francaise, Editions Mir, 1974.

[4]

J. Cheeger and D. Ebin, "Comparison Theorems in Riemannian Geometry," Revised reprint of the 1975 original. AMS Chelsea Publishing, Providence, RI, 2008.

[5]

A. V. Bolsinov, A criterion for the completeness of a family of functions in involution that is constructed by the argument translation method, (Russian) Dokl. Akad. Nauk SSSR, 301 (1988), 1037-1040; translation in Soviet Math. Dokl., 38 (1989), 161-165.

[6]

A. V. Bolsinov and B. Jovanović, Complete involutive algebras of functions on cotangent bundles of homogeneous spaces, Math. Zeit., 246 (2004), 213-236. doi: 10.1007/s00209-003-0596-x.

[7]

B. Bonnard, V. Jurdjevic, I. K. Kupka and G. Sallet, Transitivity of families of invariant vector fields on semi-direct products of lie groups, Trans. Amer. Math. Soc., 271 (1982), 525-535. doi: 10.1090/S0002-9947-1982-0654849-4.

[8]

P. Eberlein, "Geometry of Nonpositively Curved Manifolds," Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1996.

[9]

S. Helgason, "Differential Geometry, Lie Groups, and Symmetric Spaces," Pure and Applied Mathematics, 80. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978.

[10]

Y. N. Fedorov and B. Jovanovic, Geodesic flows and newmann systems on steifel varieties, Geometry and Integrability, a preprint.

[11]

V. A. Fock, The hydrogen atom and non-euclidean geometry, Izv. Akad. Nauk SSSR, Ser Fizika 8, 1935.

[12]

B. S. Goh, Necessary conditions for singular extremals involving multiple control variables, SIAM J. Control, 4 (1966), 716-731. doi: 10.1137/0304052.

[13]

P. Griffiths, "Exterior Differential Calculus and the Calculus of Variations," Birkhauser, Boston, 1992.

[14]

C. G. J. Jacobi, "Vorlesungen Uber Dynamic," Druck und Verlag von G. Reimer, Berlin, 1884.

[15]

V. Jurdjevic, "Geometric Control Theory," Cambridge Studies in Advanced Mathematics 52, Cambridge University Press, 1997.

[16]

V. Jurdjevic, Hamiltonian point of view of non-euclidean geometry and elliptic functions, System and Control Letters, Lie theory and its applications in control (Würzburg, 1999), 43 (2005), 25-41. doi: 10.1016/S0167-6911(01)00093-7.

[17]

V. Jurdjevic, Optimal control, geometry and mechanics, Mathematical Control Theory, 227-267, Springer, New York, 1999.

[18]

V. Jurdjevic and F. Monroy-Perez, Hamiltonian systems on Lie groups: Elastic curves, tops and constrained geodesic problems, in "Non-Linear Control Theory and its Applications," World Scientific Publishing Co., Singapore 2002, 3-52. doi: 10.1142/9789812778079_0001.

[19]

V. Jurdjevic, Optimal control on Lie groups and integrable hamiltonian systems, Regular and Chaotic Dyn., 16 (2011), 514-535. doi: 10.1134/S156035471105008X.

[20]

V. Jurdjevic, Integrable Hamiltonian systems on complex Lie groups, Mem. Amer. Math. Soc., 178 (2005), viii+133 pp. doi: 10.1090/memo/0838.

[21]

V. Jurdjevic, The elliptic geodesic problem on the sphere, in preparation.

[22]

H. Knorrer, Geodesics on quadrics and a mechanical problem of C. Newmann, J. Reine Angew. Math., 334 (1982), 69-78. doi: 10.1515/crll.1982.334.69.

[23]

J. Langer and D. Singer, Knotted elastic curves in $\mathbbR ^3$, J. London. Math. Soc., (2), 30 (1984), 512-520. doi: 10.1112/jlms/s2-30.3.512.

[24]

P. Lee, "Kepler's Problem," Master's thesis, University of Toronto, 2004.

[25]

J. Moser, Regularization of Kepler's problem and the averaging method on a manifold, Comm. Pure Appl. Math., 23 (1970), 609-636. doi: 10.1002/cpa.3160230406.

[26]

J. Moser, Geometry of quadrics and spectral theory, The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), 147-188, Springer, New York-Berlin, 1980.

[27]

J. Moser, "Integrable Hamiltonian Systems and Spectral Theory," Lezioni Fermiane. [Fermi Lectures] Scuola Normale Superiore, Pisa, 1983.

[28]

C. Newmann, De probleme quodam mechanico, quod ad primam integralium ultra-ellipticoram classem revocatum, J. Reine Angew. Math., 56 (1856), 345-378.

[29]

Y. Osipov, The Kepler problem and geodesic flows in spaces of constant curvature, Celestial Mechanics, 16 (1977), 191-208. doi: 10.1007/BF01228600.

[30]

A. M. Perelomov, "Integrable Systems Of Classical Mechanics And Lie Algebras, Vol. I," Translated from the Russian by A. G. Reyman [A. G. Reiman]. Birkhauser Verlag, Basel, 1990. doi: 10.1007/978-3-0348-9257-5.

[31]

T. Ratiu, The C. Newmann problem as a completely integrable system on an adjoint orbit, Trans. Amer. Math. Soc., 264 (1981), 321-329. doi: 10.2307/1998542.

[32]

A. G. Reyman, Integrable hamiltonian systems connected with graded Lie algebras, J. Sov. Math., 19 (1982), 1507-1545.

[33]

A. G. Reyman and S. Tian- Shansky, Group theoretic methods in the theory of finite dimensional integrable systems, Encyclopaedia of Mathematical Sciences, edited by V. I. Arnold and S. P. Novikov, Part II, Chapter 2, Springer-Verlag, 1994. doi: 10.1007/978-3-642-57884-7.

[1]

Jan J. Sławianowski, Vasyl Kovalchuk, Agnieszka Martens, Barbara Gołubowska, Ewa E. Rożko. Essential nonlinearity implied by symmetry group. Problems of affine invariance in mechanics and physics. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 699-733. doi: 10.3934/dcdsb.2012.17.699

[2]

Jiongmin Yong. A deterministic linear quadratic time-inconsistent optimal control problem. Mathematical Control and Related Fields, 2011, 1 (1) : 83-118. doi: 10.3934/mcrf.2011.1.83

[3]

Changzhi Wu, Kok Lay Teo, Volker Rehbock. Optimal control of piecewise affine systems with piecewise affine state feedback. Journal of Industrial and Management Optimization, 2009, 5 (4) : 737-747. doi: 10.3934/jimo.2009.5.737

[4]

Lijuan Wang, Qishu Yan. Optimal control problem for exact synchronization of parabolic system. Mathematical Control and Related Fields, 2019, 9 (3) : 411-424. doi: 10.3934/mcrf.2019019

[5]

Renzhao Chen, Xuezhang Hou. An optimal osmotic control problem for a concrete dam system. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2341-2359. doi: 10.3934/cpaa.2021082

[6]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control and Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[7]

Tijana Levajković, Hermann Mena, Amjad Tuffaha. The stochastic linear quadratic optimal control problem in Hilbert spaces: A polynomial chaos approach. Evolution Equations and Control Theory, 2016, 5 (1) : 105-134. doi: 10.3934/eect.2016.5.105

[8]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial and Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

[9]

Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064

[10]

Leonardo Colombo, David Martín de Diego. Higher-order variational problems on lie groups and optimal control applications. Journal of Geometric Mechanics, 2014, 6 (4) : 451-478. doi: 10.3934/jgm.2014.6.451

[11]

Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist, Amit K. Sanyal. Embedded geodesic problems and optimal control for matrix Lie groups. Journal of Geometric Mechanics, 2011, 3 (2) : 197-223. doi: 10.3934/jgm.2011.3.197

[12]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[13]

Shigeaki Koike, Hiroaki Morimoto, Shigeru Sakaguchi. A linear-quadratic control problem with discretionary stopping. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 261-277. doi: 10.3934/dcdsb.2007.8.261

[14]

Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 495-512. doi: 10.3934/naco.2020040

[15]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2415-2433. doi: 10.3934/jimo.2021074

[16]

Ben Muatjetjeja, Dimpho Millicent Mothibi, Chaudry Masood Khalique. Lie group classification a generalized coupled (2+1)-dimensional hyperbolic system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2803-2812. doi: 10.3934/dcdss.2020219

[17]

Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014

[18]

Kai Liu. Quadratic control problem of neutral Ornstein-Uhlenbeck processes with control delays. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1651-1661. doi: 10.3934/dcdsb.2013.18.1651

[19]

Gülden Gün Polat, Teoman Özer. On group analysis of optimal control problems in economic growth models. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2853-2876. doi: 10.3934/dcdss.2020215

[20]

Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. An optimal control problem in HIV treatment. Conference Publications, 2013, 2013 (special) : 311-322. doi: 10.3934/proc.2013.2013.311

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (161)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]