-
Previous Article
Controllability with quadratic drift
- MCRF Home
- This Issue
-
Next Article
On the application of geometric optimal control theory to Nuclear Magnetic Resonance
Algebraic geometric classification of the singular flow in the contrast imaging problem in nuclear magnetic resonance
1. | Institut de Mathématiques de Bourgogne, UMR CNRS 5584, Dijon F-21078, France, France |
2. | University of Hawai'i, 2565 McCarthy Mall, Honolulu, HI 96822, United States, United States |
References:
[1] |
V. Arnol'd, "Chapitres Supplémentaires de la Théorie des Équations Différentielles Ordinaires,'', (French) [Supplementary Chapters to the Theory of Ordinary Differential Equations], (1980).
|
[2] |
B. Bonnard, Feedback equivalence for nonlinear systems and the time optimal control problem,, SIAM J. Control Optim., 29 (1991), 1300.
doi: 10.1137/0329067. |
[3] |
B. Bonnard and M. Chyba, "Singular Trajectories and their Role in Control Theory,'', Mathématiques & Applications (Berlin), 40 (2003).
|
[4] |
B. Bonnard, M. Chyba and J. Marriott, Singular trajectories and the contrast imaging problem in nuclear magnetic resonance,, SIAM J. Control Optim., 51 (2013), 1325.
doi: 10.1137/110833427. |
[5] |
B. Bonnard and O. Cots, Geometric numerical methods and results in the control imaging problem in nuclear magnetic resonance,, to appear in Mathematical Models and Methods in Applied Sciences., (). Google Scholar |
[6] |
B. Bonnard, O. Cots, S. J. Glaser, M. Lapert, D. Sugny and Y. Zhang, Geometric optimal control of the contrast imaging problem in nuclear magnetic resonance,, IEEE Trans. Automat. Control, 57 (2012), 1957.
doi: 10.1109/TAC.2012.2195859. |
[7] |
B. Bonnard and I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal,, Forum Math., 5 (1993), 111.
doi: 10.1515/form.1993.5.111. |
[8] |
D. Cox, J. Little and D. O'Shea, "Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra,'', Third edition, (2007).
doi: 10.1007/978-0-387-35651-8. |
[9] |
J. A. Dieudonné and J. B. Carrell, Invariant theory, old and new,, Advances in Math., 4 (1970), 1.
|
[10] |
D. Eisenbud, C. Huneke and W. Vasconcelos, Direct methods for primary decomposition,, Invent. Math., 110 (1992), 207.
doi: 10.1007/BF01231331. |
[11] |
P. Gianni, G. Trager and G. Zacharias, Gröbner bases and primary decompositions of polynomial ideals. Computational aspects of commutative algebra,, J. Symbolic Comput., 6 (1988), 149.
doi: 10.1016/S0747-7171(88)80040-3. |
[12] |
P. Hartman, "Ordinary Differential Equations,'', Classics in Applied Mathematics, 38 (2002).
doi: 10.1137/1.9780898719222. |
[13] |
A. Jacquemard and M. A. Teixeira, Effective algebraic geometry and normal forms of reversible mappings,, Revista Matemática Complutense, 15 (2002), 31.
|
[14] |
B. Jakubczyk, Curvatures of single-input control systems,, Control and Cybernetics, 38 (2009), 1375.
|
[15] |
N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen and S. J. Glaser, Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms,, J. of Magnetic Resonance, 172 (2005), 296.
doi: 10.1016/j.jmr.2004.11.004. |
[16] |
A. J. Krener, The high order maximal principle and its application to singular extremals,, SIAM J. Control Optimization, 15 (1977), 256.
doi: 10.1137/0315019. |
[17] |
M. Lapert, Y. Zhang, M. Braun, S. J. Glaser and D. Sugny, Singular extremals for the time-optimal control of dissipative spin $\frac{1}{2}$ particles,, Phys. Rev. Lett., 104 (2010). Google Scholar |
[18] |
M. Lapert, Y. Zhang, M. A. Janich, S. J. Glaser and D. Sugny, Exploring the physical limits of saturation contrast in magnetic resonance imaging,, Sci. Rep., 2 (2012).
doi: 10.1038/srep00589. |
[19] |
T. Levi-Civita, "The Absolute Differential Calculus. Calculus of Tensors,'', Reprint of the 1926 translation, (1926).
|
[20] |
M. H. Levitt, "Spin Dynamics: Basics of Nuclear Magnetic Resonance,'', Second edition, (2008). Google Scholar |
[21] |
L. Markus, Quadratic differential equations and non-associative algebras,, in, (1960), 185.
|
[22] |
H. Melenk, H. M. Möller and W. Neun, Symbolic solution of large stationary chemical kinetics problems,, IMPACT of Computing in Science and Engineering, 1 (1989), 138.
doi: 10.1016/0899-8248(89)90027-X. |
[23] |
D. Mumford, J. Fogarty and F. Kirwan, "Geometric Invariant Theory,'', Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 34 (1994).
doi: 10.1007/978-3-642-57916-5. |
[24] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,'', Translated from the Russian by K. N. Trirogoff, (1962).
|
[25] |
A. O. Remizov, Implicit differential equations and vector fields with nonisolated singular points,, Mat. Sb., 193 (2002), 105.
doi: 10.1070/SM2002v193n11ABEH000693. |
show all references
References:
[1] |
V. Arnol'd, "Chapitres Supplémentaires de la Théorie des Équations Différentielles Ordinaires,'', (French) [Supplementary Chapters to the Theory of Ordinary Differential Equations], (1980).
|
[2] |
B. Bonnard, Feedback equivalence for nonlinear systems and the time optimal control problem,, SIAM J. Control Optim., 29 (1991), 1300.
doi: 10.1137/0329067. |
[3] |
B. Bonnard and M. Chyba, "Singular Trajectories and their Role in Control Theory,'', Mathématiques & Applications (Berlin), 40 (2003).
|
[4] |
B. Bonnard, M. Chyba and J. Marriott, Singular trajectories and the contrast imaging problem in nuclear magnetic resonance,, SIAM J. Control Optim., 51 (2013), 1325.
doi: 10.1137/110833427. |
[5] |
B. Bonnard and O. Cots, Geometric numerical methods and results in the control imaging problem in nuclear magnetic resonance,, to appear in Mathematical Models and Methods in Applied Sciences., (). Google Scholar |
[6] |
B. Bonnard, O. Cots, S. J. Glaser, M. Lapert, D. Sugny and Y. Zhang, Geometric optimal control of the contrast imaging problem in nuclear magnetic resonance,, IEEE Trans. Automat. Control, 57 (2012), 1957.
doi: 10.1109/TAC.2012.2195859. |
[7] |
B. Bonnard and I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal,, Forum Math., 5 (1993), 111.
doi: 10.1515/form.1993.5.111. |
[8] |
D. Cox, J. Little and D. O'Shea, "Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra,'', Third edition, (2007).
doi: 10.1007/978-0-387-35651-8. |
[9] |
J. A. Dieudonné and J. B. Carrell, Invariant theory, old and new,, Advances in Math., 4 (1970), 1.
|
[10] |
D. Eisenbud, C. Huneke and W. Vasconcelos, Direct methods for primary decomposition,, Invent. Math., 110 (1992), 207.
doi: 10.1007/BF01231331. |
[11] |
P. Gianni, G. Trager and G. Zacharias, Gröbner bases and primary decompositions of polynomial ideals. Computational aspects of commutative algebra,, J. Symbolic Comput., 6 (1988), 149.
doi: 10.1016/S0747-7171(88)80040-3. |
[12] |
P. Hartman, "Ordinary Differential Equations,'', Classics in Applied Mathematics, 38 (2002).
doi: 10.1137/1.9780898719222. |
[13] |
A. Jacquemard and M. A. Teixeira, Effective algebraic geometry and normal forms of reversible mappings,, Revista Matemática Complutense, 15 (2002), 31.
|
[14] |
B. Jakubczyk, Curvatures of single-input control systems,, Control and Cybernetics, 38 (2009), 1375.
|
[15] |
N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen and S. J. Glaser, Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms,, J. of Magnetic Resonance, 172 (2005), 296.
doi: 10.1016/j.jmr.2004.11.004. |
[16] |
A. J. Krener, The high order maximal principle and its application to singular extremals,, SIAM J. Control Optimization, 15 (1977), 256.
doi: 10.1137/0315019. |
[17] |
M. Lapert, Y. Zhang, M. Braun, S. J. Glaser and D. Sugny, Singular extremals for the time-optimal control of dissipative spin $\frac{1}{2}$ particles,, Phys. Rev. Lett., 104 (2010). Google Scholar |
[18] |
M. Lapert, Y. Zhang, M. A. Janich, S. J. Glaser and D. Sugny, Exploring the physical limits of saturation contrast in magnetic resonance imaging,, Sci. Rep., 2 (2012).
doi: 10.1038/srep00589. |
[19] |
T. Levi-Civita, "The Absolute Differential Calculus. Calculus of Tensors,'', Reprint of the 1926 translation, (1926).
|
[20] |
M. H. Levitt, "Spin Dynamics: Basics of Nuclear Magnetic Resonance,'', Second edition, (2008). Google Scholar |
[21] |
L. Markus, Quadratic differential equations and non-associative algebras,, in, (1960), 185.
|
[22] |
H. Melenk, H. M. Möller and W. Neun, Symbolic solution of large stationary chemical kinetics problems,, IMPACT of Computing in Science and Engineering, 1 (1989), 138.
doi: 10.1016/0899-8248(89)90027-X. |
[23] |
D. Mumford, J. Fogarty and F. Kirwan, "Geometric Invariant Theory,'', Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 34 (1994).
doi: 10.1007/978-3-642-57916-5. |
[24] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,'', Translated from the Russian by K. N. Trirogoff, (1962).
|
[25] |
A. O. Remizov, Implicit differential equations and vector fields with nonisolated singular points,, Mat. Sb., 193 (2002), 105.
doi: 10.1070/SM2002v193n11ABEH000693. |
[1] |
Elie Assémat, Marc Lapert, Dominique Sugny, Steffen J. Glaser. On the application of geometric optimal control theory to Nuclear Magnetic Resonance. Mathematical Control & Related Fields, 2013, 3 (4) : 375-396. doi: 10.3934/mcrf.2013.3.375 |
[2] |
B. Bonnard, J.-B. Caillau, E. Trélat. Geometric optimal control of elliptic Keplerian orbits. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 929-956. doi: 10.3934/dcdsb.2005.5.929 |
[3] |
Antonio Fernández, Pedro L. García. Regular discretizations in optimal control theory. Journal of Geometric Mechanics, 2013, 5 (4) : 415-432. doi: 10.3934/jgm.2013.5.415 |
[4] |
K. Renee Fister, Jennifer Hughes Donnelly. Immunotherapy: An Optimal Control Theory Approach. Mathematical Biosciences & Engineering, 2005, 2 (3) : 499-510. doi: 10.3934/mbe.2005.2.499 |
[5] |
Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967 |
[6] |
Durga Prasad Challa, Anupam Pal Choudhury, Mourad Sini. Mathematical imaging using electric or magnetic nanoparticles as contrast agents. Inverse Problems & Imaging, 2018, 12 (3) : 573-605. doi: 10.3934/ipi.2018025 |
[7] |
K.F.C. Yiu, K.L. Mak, K. L. Teo. Airfoil design via optimal control theory. Journal of Industrial & Management Optimization, 2005, 1 (1) : 133-148. doi: 10.3934/jimo.2005.1.133 |
[8] |
Dingjun Yao, Rongming Wang, Lin Xu. Optimal asset control of a geometric Brownian motion with the transaction costs and bankruptcy permission. Journal of Industrial & Management Optimization, 2015, 11 (2) : 461-478. doi: 10.3934/jimo.2015.11.461 |
[9] |
Monique Chyba, Geoff Patterson, Gautier Picot, Mikael Granvik, Robert Jedicke, Jeremie Vaubaillon. Designing rendezvous missions with mini-moons using geometric optimal control. Journal of Industrial & Management Optimization, 2014, 10 (2) : 477-501. doi: 10.3934/jimo.2014.10.477 |
[10] |
Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. An optimal control problem in HIV treatment. Conference Publications, 2013, 2013 (special) : 311-322. doi: 10.3934/proc.2013.2013.311 |
[11] |
Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195 |
[12] |
Laurenz Göllmann, Helmut Maurer. Theory and applications of optimal control problems with multiple time-delays. Journal of Industrial & Management Optimization, 2014, 10 (2) : 413-441. doi: 10.3934/jimo.2014.10.413 |
[13] |
Zhi Guo Feng, K. F. Cedric Yiu, K.L. Mak. Feature extraction of the patterned textile with deformations via optimal control theory. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1055-1069. doi: 10.3934/dcdsb.2011.16.1055 |
[14] |
Simone Farinelli. Geometric arbitrage theory and market dynamics. Journal of Geometric Mechanics, 2015, 7 (4) : 431-471. doi: 10.3934/jgm.2015.7.431 |
[15] |
Andrew D. Lewis, David R. Tyner. Geometric Jacobian linearization and LQR theory. Journal of Geometric Mechanics, 2010, 2 (4) : 397-440. doi: 10.3934/jgm.2010.2.397 |
[16] |
Ulrike Kant, Werner M. Seiler. Singularities in the geometric theory of differential equations. Conference Publications, 2011, 2011 (Special) : 784-793. doi: 10.3934/proc.2011.2011.784 |
[17] |
V.N. Malozemov, A.V. Omelchenko. On a discrete optimal control problem with an explicit solution. Journal of Industrial & Management Optimization, 2006, 2 (1) : 55-62. doi: 10.3934/jimo.2006.2.55 |
[18] |
Urszula Ledzewicz, Heinz Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 129-150. doi: 10.3934/dcdsb.2006.6.129 |
[19] |
Akram Kheirabadi, Asadollah Mahmoudzadeh Vaziri, Sohrab Effati. Solving optimal control problem using Hermite wavelet. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 101-112. doi: 10.3934/naco.2019008 |
[20] |
Lijuan Wang, Qishu Yan. Optimal control problem for exact synchronization of parabolic system. Mathematical Control & Related Fields, 2019, 9 (3) : 411-424. doi: 10.3934/mcrf.2019019 |
2018 Impact Factor: 1.292
Tools
Metrics
Other articles
by authors
[Back to Top]