Citation: |
[1] |
M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, L. Giardina, L. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, PNAS, 105 (2008), 1232-1237.doi: 10.1073/pnas.0711437105. |
[2] |
N. Bellomo, M. A. Herrero and A. Tosin, On the dynamics of social conflict: Looking for the Black Swan, arXiv:1202.4554, 2012. |
[3] |
A. Blanchet, E. A. Carlen and J. A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model, J. Funct. Anal., 262 (2012), 2142-2230.doi: 10.1016/j.jfa.2011.12.012. |
[4] |
A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control," AIMS Series on Applied Mathematics, 2, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2007. |
[5] |
S. Camazine, J.-L. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz and E. Bonabeau, "Self-Organization in Biological Systems," Reprint of the 2001 original, Princeton Studies in Complexity, Princeton University Press, Princeton, NJ, 2003. |
[6] |
E. J. Candès, J. Romberg and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Comm. Pure Appl. Math., 59 (2006), 1207-1223.doi: 10.1002/cpa.20124. |
[7] |
M. Caponigro, M. Fornasier, B. Piccoli and E. Trélat, Sparse stabilization and control of the Cucker-Smale model, arXiv:1210.5739. |
[8] |
J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in "Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences" (eds. G. Naldi, L. Pareschi, G. Toscani and N. Bellomo), Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, (2010), 297-336.doi: 10.1007/978-0-8176-4946-3_12. |
[9] |
E. Casas, C. Clason and K. Kunisch, Approximation of elliptic control problems in measure spaces with sparse solutions, SIAM J. Control Optim., 50 (2012), 1735-1752.doi: 10.1137/110843216. |
[10] |
L. Cesari, "Optimization-Theory and Applications. Problems with Ordinary Differential Equations," Applications of Mathematics (New York), 17, Springer-Verlag, New York, 1983. |
[11] |
Y. Chuang, Y. Huang, M. D'Orsogna and A. Bertozzi, Multi-vehicle flocking: Scalability of cooperative control algorithms using pairwise potentials, in "IEEE International Conference on Robotics and Automation," Roma, (2007), 2292-2299.doi: 10.1109/ROBOT.2007.363661. |
[12] |
F. H. Clarke, Y. S. Ledyaev, E. D. Sontag and A. I. Subbotin, Asymptotic controllability implies feedback stabilization, IEEE Trans. Automat. Control, 42 (1997), 1394-1407.doi: 10.1109/9.633828. |
[13] |
C. Clason and K. Kunisch, A duality-based approach to elliptic control problems in non-reflexive Banach spaces, ESAIM Control Optim. Calc. Var., 17 (2011), 243-266.doi: 10.1051/cocv/2010003. |
[14] |
C. Clason and K. Kunisch, A measure space approach to optimal source placement, Comput. Optim. Appl., 53 (2012), 155-171.doi: 10.1007/s10589-011-9444-9. |
[15] |
J.-M. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations, SIAM J. Control Optim., 43 (2004), 549-569 (electronic).doi: 10.1137/S036301290342471X. |
[16] |
J.-M. Coron and E. Trélat, Global steady-state stabilization and controllability of 1D semilinear wave equations, Commun. Contemp. Math., 8 (2006), 535-567.doi: 10.1142/S0219199706002209. |
[17] |
I. Couzin and N. Franks, Self-organized lane formation and optimized traffic flow in army ants, Proc. R. Soc. Lond. B, 270 (2002), 139-146.doi: 10.1098/rspb.2002.2210. |
[18] |
I. Couzin, J. Krause, N. Franks and S. Levin, Effective leadership and decision making in animal groups on the move, Nature, 433 (2005), 513-516.doi: 10.1038/nature03236. |
[19] |
A. J. Craig and I. Flügge-Lotz, Investigation of optimal control with a minimum-fuel consumption criterion for a fourth-order plant with two control inputs; synthesis of an efficient suboptimal control, J. Basic Engineering, 87 (1965), 39-57.doi: 10.1115/1.3650527. |
[20] |
E. Cristiani, B. Piccoli and A. Tosin, Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints, in "Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences," (eds. G. Naldi, L. Pareschi, G. Toscani and N. Bellomo), Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 2010.doi: 10.1007/978-0-8176-4946-3_13. |
[21] |
E. Cristiani, B. Piccoli and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics, Multiscale Model. Simul., 9 (2011), 155-182.doi: 10.1137/100797515. |
[22] |
F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.doi: 10.1109/TAC.2007.895842. |
[23] |
F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227.doi: 10.1007/s11537-007-0647-x. |
[24] |
F. Cucker, S. Smale and D. Zhou, Modeling language evolution, Found. Comput. Math., 4 (2004), 315-343.doi: 10.1007/s10208-003-0101-2. |
[25] |
D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), 1289-1306.doi: 10.1109/TIT.2006.871582. |
[26] |
B. Düring, D. Matthes and G. Toscani, Kinetic equations modelling wealth redistribution: A comparison of approaches, Phys. Rev. E, 78 (2008), 056103, 12 pp.doi: 10.1103/PhysRevE.78.056103. |
[27] |
Y. Eldar and H. Rauhut, Average case analysis of multichannel sparse recovery using convex relaxation, IEEE Trans. Inform. Theory, 56 (2010), 505-519.doi: 10.1109/TIT.2009.2034789. |
[28] |
M. Fornasier and H. Rauhut, Recovery algorithms for vector-valued data with joint sparsity constraints, SIAM J. Numer. Anal., 46 (2008), 577-613.doi: 10.1137/0606668909. |
[29] |
M. Fornasier and H. Rauhut, "Handbook of Mathematical Methods in Imaging," chapter Compressive Sensing, Springer-Verlag, 2010. |
[30] |
S.-Y. Ha, T. Ha and J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings, IEEE Trans. Automat. Control, 55 (2010), 1679-1683.doi: 10.1109/TAC.2010.2046113. |
[31] |
R. Herzog, G. Stadler and G. Wachsmuth, Directional sparsity in optimal control of partial differential equations, SIAM J. Control and Optimization, 50 (2012), 943-963.doi: 10.1137/100815037. |
[32] |
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Dtsch. Math.-Ver., 105 (2003), 103-165. |
[33] |
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. II, Jahresber. Dtsch. Math.-Ver., 106 (2004), 51-69. |
[34] |
A. Jadbabaie, J. Lin and A. S. Morse, Correction to: "Coordination of groups of mobile autonomous agents using nearest neighbor rules,'' [IEEE Trans. Automat. Control 48 (2003), 988-1001; MR 1986266] IEEE Trans. Automat. Control, 48 (2003), 1675. |
[35] |
J. Ke, J. Minett, C.-P. Au and W.-Y. Wang, Self-organization and selection in the emergence of vocabulary, Complexity, 7 (2002), 41-54.doi: 10.1002/cplx.10030. |
[36] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5. |
[37] |
A. Lachapelle and M. T. Wolfram, On a mean field game approach modeling congestion and aversion in pedestrian crowds, Trans. Res.: Part B: Methodological, 45 (2011), 1572-1589.doi: 10.1016/j.trb.2011.07.011. |
[38] |
J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math. (3), 2 (2007), 229-260.doi: 10.1007/s11537-007-0657-8. |
[39] |
S. Lemercier, A. Jelic, R. Kulpa, J. Hua, J. Fehrenbach, P. Degond, C. Appert-Rolland, S. Donikian and J. Pettré, Realistic following behaviors for crowd simulation, Computer Graphics Forum, 31 (2012), 489-498.doi: 10.1111/j.1467-8659.2012.03028.x. |
[40] |
N. Leonard and E. Fiorelli, Virtual leaders, artificial potentials and coordinated control of groups, in "Proc. 40th IEEE Conf. Decision Contr.," (2001), 2968-2973. |
[41] |
S. Mallat, "A Wavelet Tour of Signal Processing. The Sparse Way," Third edition, Elsevier/Academic Press, Amsterdam, 2009. |
[42] |
M. Moussaïd, E. G. Guillot, M. Moreau, J. Fehrenbach, O. Chabiron, S. Lemercier, J. Pettré, C. Appert-Rolland, P. Degond and G. Theraulaz, Traffic instabilities in self-organized pedestrian crowds, PLoS Computational Biology, 8 (2012), e1002442. |
[43] |
H. Niwa, Self-organizing dynamic model of fish schooling, J. Theor. Biol., 171 (1994), 123-136.doi: 10.1006/jtbi.1994.1218. |
[44] |
J. Parrish and L. Edelstein-Keshet, Complexity, pattern, and evolutionary trade-offs in animal aggregation, Science, 294 (1999), 99-101.doi: 10.1126/science.284.5411.99. |
[45] |
J. Parrish, S. Viscido and D. Gruenbaum, Self-organized fish schools: An examination of emergent properties, Biol. Bull., 202 (2002), 296-305.doi: 10.2307/1543482. |
[46] |
C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338.doi: 10.1007/BF02476407. |
[47] |
L. Perea, G. Gómez and P. Elosegui, Extension of the Cucker-Smale control law to space flight formations, AIAA Journal of Guidance, Control, and Dynamics, 32 (2009), 527-537.doi: 10.2514/1.36269. |
[48] |
B. Perthame, "Transport Equations in Biology," Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007. |
[49] |
K. Pieper and B. Vexler, A priori error analysis for discretization of sparse elliptic optimal control problems in measure space, SIAM J. Control Optim., 51 (2013), 2788-2808.doi: 10.1137/120889137. |
[50] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes," Interscience Publishers John Wiley & Sons, Inc., New York-London, 1962. |
[51] |
Y. Privat, E. Trélat and E. Zuazua, Complexity and regularity of maximal energy domains for the wave equation with fixed initial data, hal-00813647, version 1, 2013. |
[52] |
Y. Privat, E. Trélat and E. Zuazua, Optimal location of controllers for the one-dimensional wave equation, to appear in Ann. Inst. H. Poincaré Anal. Non Linéaire, (2013). |
[53] |
Y. Privat, E. Trélat and E. Zuazua, Optimal observation of the one-dimensional wave equation, J. Fourier Anal. Appl., 19 (2013), 514-544.doi: 10.1007/s00041-013-9267-4. |
[54] |
A. Rahmani, M. Ji, M. Mesbahi and M. Egerstedt, Controllability of multi-agent systems from a graph-theoretic perspective, SIAM J. Control and Optimization, 48 (2009), 162-186.doi: 10.1137/060674909. |
[55] |
W. Romey, Individual differences make a difference in the trajectories of simulated schools of fish, Ecol. Model., 92 (1996), 65-77.doi: 10.1016/0304-3800(95)00202-2. |
[56] |
R. Sepulchre, D. Paley and N. E. Leonard, Stabilization of planar collective motion: All-to-all communication, IEEE Transactions on Automatic Control, 52 (2007), 811-824.doi: 10.1109/TAC.2007.898077. |
[57] |
M. B. Short, M. R. D'Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi and L. B. Chayes, A statistical model of criminal behavior, Math. Models Methods Appl. Sci., 18 (2008), 1249-1267.doi: 10.1142/S0218202508003029. |
[58] |
G. Stadler, Elliptic optimal control problems with $L^1$-control cost and applications for the placement of control devices, Comput. Optim. Appl., 44 (2009), 159-181.doi: 10.1007/s10589-007-9150-9. |
[59] |
K. Sugawara and M. Sano, Cooperative acceleration of task performance: Foraging behavior of interacting multi-robots system, Physica D, 100 (1997), 343-354. |
[60] | |
[61] |
J. Toner and Y. Tu, Long-range order in a two-dimensional dynamical XY model: How birds fly together, Phys. Rev. Lett., 75 (1995), 4326-4329.doi: 10.1103/PhysRevLett.75.4326. |
[62] |
E. Trélat, "Contrôle Optimal. Théorie & Applications," Vuibert, Paris, 2005. |
[63] |
T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.doi: 10.1103/PhysRevLett.75.1226. |
[64] |
G. Vossen and H. Maurer, $L^1$ minimization in optimal control and applications to robotics, Optimal Control Applications and Methods, 27 (2006), 301-321.doi: 10.1002/oca.781. |
[65] |
G. Wachsmuth and D. Wachsmuth, Convergence and regularization results for optimal control problems with sparsity functional, ESAIM, Control Optim. Calc. Var., 17 (2011), 858-886.doi: 10.1051/cocv/2010027. |
[66] |
C. Yates, R. Erban, C. Escudero, L. Couzin, J. Buhl, L. Kevrekidis, P. Maini and D. Sumpter, Inherent noise can facilitate coherence in collective swarm motion, Proceedings of the National Academy of Sciences, 106 (2009), 5464-5469.doi: 10.1073/pnas.0811195106. |
[67] |
M. I. Zelikin and V. F. Borisov, "Theory of Chattering Control. With Applications to Astronautics, Robotics, Economics, and Engineering," Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994.doi: 10.1007/978-1-4612-2702-1. |