December  2013, 3(4): 447-466. doi: 10.3934/mcrf.2013.3.447

Sparse stabilization and optimal control of the Cucker-Smale model

1. 

Conservatoire National des Arts et Métiers, Département Ingénierie Mathématique (IMATH), Équipe M2N, 292 rue Saint-Martin, 75003, Paris,, France

2. 

Technische Universität München, Facultät Mathematik, Boltzmannstrasse 3, D-85748, Garching bei München, Germany

3. 

Rutgers University, Department of Mathematics, Business & Science Building Room 325, Camden, NJ 08102, United States

4. 

Université Pierre et Marie Curie (Univ. Paris 6) and Institut Universitaire de France and Team GECO Inria Saclay, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France

Received  November 2012 Revised  June 2013 Published  September 2013

This article is mainly based on the work [7], and it is dedicated to the 60th anniversary of B. Bonnard, held in Dijon in June 2012.
    We focus on a controlled Cucker--Smale model in finite dimension. Such dynamics model self-organization and consensus emergence in a group of agents. We explore how it is possible to control this model in order to enforce or facilitate pattern formation or convergence to consensus. In particular, we are interested in designing control strategies that are componentwise sparse in the sense that they require a small amount of external intervention, and also time sparse in the sense that such strategies are not chattering in time. These sparsity features are desirable in view of practical issues.
    We first show how very simple sparse feedback strategies can be designed with the use of a variational principle, in order to steer the system to consensus. These feedbacks are moreover optimal in terms of decay rate of some functional, illustrating the general principle according to which ``sparse is better''. We then combine these results with local controllability properties to get global controllability results. Finally, we explore the sparsity properties of the optimal control minimizing a combination of the distance from consensus and of a norm of the control.
Citation: Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat. Sparse stabilization and optimal control of the Cucker-Smale model. Mathematical Control & Related Fields, 2013, 3 (4) : 447-466. doi: 10.3934/mcrf.2013.3.447
References:
[1]

M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, L. Giardina, L. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study,, PNAS, 105 (2008), 1232.  doi: 10.1073/pnas.0711437105.  Google Scholar

[2]

N. Bellomo, M. A. Herrero and A. Tosin, On the dynamics of social conflict: Looking for the Black Swan,, , (2012).   Google Scholar

[3]

A. Blanchet, E. A. Carlen and J. A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model,, J. Funct. Anal., 262 (2012), 2142.  doi: 10.1016/j.jfa.2011.12.012.  Google Scholar

[4]

A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control,", AIMS Series on Applied Mathematics, 2 (2007).   Google Scholar

[5]

S. Camazine, J.-L. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz and E. Bonabeau, "Self-Organization in Biological Systems,", Reprint of the 2001 original, (2001).   Google Scholar

[6]

E. J. Candès, J. Romberg and T. Tao, Stable signal recovery from incomplete and inaccurate measurements,, Comm. Pure Appl. Math., 59 (2006), 1207.  doi: 10.1002/cpa.20124.  Google Scholar

[7]

M. Caponigro, M. Fornasier, B. Piccoli and E. Trélat, Sparse stabilization and control of the Cucker-Smale model,, , ().   Google Scholar

[8]

J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming,, in, (2010), 297.  doi: 10.1007/978-0-8176-4946-3_12.  Google Scholar

[9]

E. Casas, C. Clason and K. Kunisch, Approximation of elliptic control problems in measure spaces with sparse solutions,, SIAM J. Control Optim., 50 (2012), 1735.  doi: 10.1137/110843216.  Google Scholar

[10]

L. Cesari, "Optimization-Theory and Applications. Problems with Ordinary Differential Equations,", Applications of Mathematics (New York), 17 (1983).   Google Scholar

[11]

Y. Chuang, Y. Huang, M. D'Orsogna and A. Bertozzi, Multi-vehicle flocking: Scalability of cooperative control algorithms using pairwise potentials,, in, (2007), 2292.  doi: 10.1109/ROBOT.2007.363661.  Google Scholar

[12]

F. H. Clarke, Y. S. Ledyaev, E. D. Sontag and A. I. Subbotin, Asymptotic controllability implies feedback stabilization,, IEEE Trans. Automat. Control, 42 (1997), 1394.  doi: 10.1109/9.633828.  Google Scholar

[13]

C. Clason and K. Kunisch, A duality-based approach to elliptic control problems in non-reflexive Banach spaces,, ESAIM Control Optim. Calc. Var., 17 (2011), 243.  doi: 10.1051/cocv/2010003.  Google Scholar

[14]

C. Clason and K. Kunisch, A measure space approach to optimal source placement,, Comput. Optim. Appl., 53 (2012), 155.  doi: 10.1007/s10589-011-9444-9.  Google Scholar

[15]

J.-M. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations,, SIAM J. Control Optim., 43 (2004), 549.  doi: 10.1137/S036301290342471X.  Google Scholar

[16]

J.-M. Coron and E. Trélat, Global steady-state stabilization and controllability of 1D semilinear wave equations,, Commun. Contemp. Math., 8 (2006), 535.  doi: 10.1142/S0219199706002209.  Google Scholar

[17]

I. Couzin and N. Franks, Self-organized lane formation and optimized traffic flow in army ants,, Proc. R. Soc. Lond. B, 270 (2002), 139.  doi: 10.1098/rspb.2002.2210.  Google Scholar

[18]

I. Couzin, J. Krause, N. Franks and S. Levin, Effective leadership and decision making in animal groups on the move,, Nature, 433 (2005), 513.  doi: 10.1038/nature03236.  Google Scholar

[19]

A. J. Craig and I. Flügge-Lotz, Investigation of optimal control with a minimum-fuel consumption criterion for a fourth-order plant with two control inputs; synthesis of an efficient suboptimal control,, J. Basic Engineering, 87 (1965), 39.  doi: 10.1115/1.3650527.  Google Scholar

[20]

E. Cristiani, B. Piccoli and A. Tosin, Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints,, in, (2010).  doi: 10.1007/978-0-8176-4946-3_13.  Google Scholar

[21]

E. Cristiani, B. Piccoli and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics,, Multiscale Model. Simul., 9 (2011), 155.  doi: 10.1137/100797515.  Google Scholar

[22]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[23]

F. Cucker and S. Smale, On the mathematics of emergence,, Jpn. J. Math., 2 (2007), 197.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[24]

F. Cucker, S. Smale and D. Zhou, Modeling language evolution,, Found. Comput. Math., 4 (2004), 315.  doi: 10.1007/s10208-003-0101-2.  Google Scholar

[25]

D. L. Donoho, Compressed sensing,, IEEE Trans. Inform. Theory, 52 (2006), 1289.  doi: 10.1109/TIT.2006.871582.  Google Scholar

[26]

B. Düring, D. Matthes and G. Toscani, Kinetic equations modelling wealth redistribution: A comparison of approaches,, Phys. Rev. E, 78 (2008).  doi: 10.1103/PhysRevE.78.056103.  Google Scholar

[27]

Y. Eldar and H. Rauhut, Average case analysis of multichannel sparse recovery using convex relaxation,, IEEE Trans. Inform. Theory, 56 (2010), 505.  doi: 10.1109/TIT.2009.2034789.  Google Scholar

[28]

M. Fornasier and H. Rauhut, Recovery algorithms for vector-valued data with joint sparsity constraints,, SIAM J. Numer. Anal., 46 (2008), 577.  doi: 10.1137/0606668909.  Google Scholar

[29]

M. Fornasier and H. Rauhut, "Handbook of Mathematical Methods in Imaging,", chapter Compressive Sensing, (2010).   Google Scholar

[30]

S.-Y. Ha, T. Ha and J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings,, IEEE Trans. Automat. Control, 55 (2010), 1679.  doi: 10.1109/TAC.2010.2046113.  Google Scholar

[31]

R. Herzog, G. Stadler and G. Wachsmuth, Directional sparsity in optimal control of partial differential equations,, SIAM J. Control and Optimization, 50 (2012), 943.  doi: 10.1137/100815037.  Google Scholar

[32]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I,, Jahresber. Dtsch. Math.-Ver., 105 (2003), 103.   Google Scholar

[33]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. II,, Jahresber. Dtsch. Math.-Ver., 106 (2004), 51.   Google Scholar

[34]

A. Jadbabaie, J. Lin and A. S. Morse, Correction to: "Coordination of groups of mobile autonomous agents using nearest neighbor rules,'', [IEEE Trans. Automat. Control 48 (2003), 48 (2003), 988.   Google Scholar

[35]

J. Ke, J. Minett, C.-P. Au and W.-Y. Wang, Self-organization and selection in the emergence of vocabulary,, Complexity, 7 (2002), 41.  doi: 10.1002/cplx.10030.  Google Scholar

[36]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[37]

A. Lachapelle and M. T. Wolfram, On a mean field game approach modeling congestion and aversion in pedestrian crowds,, Trans. Res.: Part B: Methodological, 45 (2011), 1572.  doi: 10.1016/j.trb.2011.07.011.  Google Scholar

[38]

J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math. (3), 2 (2007), 229.  doi: 10.1007/s11537-007-0657-8.  Google Scholar

[39]

S. Lemercier, A. Jelic, R. Kulpa, J. Hua, J. Fehrenbach, P. Degond, C. Appert-Rolland, S. Donikian and J. Pettré, Realistic following behaviors for crowd simulation,, Computer Graphics Forum, 31 (2012), 489.  doi: 10.1111/j.1467-8659.2012.03028.x.  Google Scholar

[40]

N. Leonard and E. Fiorelli, Virtual leaders, artificial potentials and coordinated control of groups,, in, (2001), 2968.   Google Scholar

[41]

S. Mallat, "A Wavelet Tour of Signal Processing. The Sparse Way,", Third edition, (2009).   Google Scholar

[42]

M. Moussaïd, E. G. Guillot, M. Moreau, J. Fehrenbach, O. Chabiron, S. Lemercier, J. Pettré, C. Appert-Rolland, P. Degond and G. Theraulaz, Traffic instabilities in self-organized pedestrian crowds,, PLoS Computational Biology, 8 (2012).   Google Scholar

[43]

H. Niwa, Self-organizing dynamic model of fish schooling,, J. Theor. Biol., 171 (1994), 123.  doi: 10.1006/jtbi.1994.1218.  Google Scholar

[44]

J. Parrish and L. Edelstein-Keshet, Complexity, pattern, and evolutionary trade-offs in animal aggregation,, Science, 294 (1999), 99.  doi: 10.1126/science.284.5411.99.  Google Scholar

[45]

J. Parrish, S. Viscido and D. Gruenbaum, Self-organized fish schools: An examination of emergent properties,, Biol. Bull., 202 (2002), 296.  doi: 10.2307/1543482.  Google Scholar

[46]

C. S. Patlak, Random walk with persistence and external bias,, Bull. Math. Biophys., 15 (1953), 311.  doi: 10.1007/BF02476407.  Google Scholar

[47]

L. Perea, G. Gómez and P. Elosegui, Extension of the Cucker-Smale control law to space flight formations,, AIAA Journal of Guidance, 32 (2009), 527.  doi: 10.2514/1.36269.  Google Scholar

[48]

B. Perthame, "Transport Equations in Biology,", Frontiers in Mathematics, (2007).   Google Scholar

[49]

K. Pieper and B. Vexler, A priori error analysis for discretization of sparse elliptic optimal control problems in measure space,, SIAM J. Control Optim., 51 (2013), 2788.  doi: 10.1137/120889137.  Google Scholar

[50]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", Interscience Publishers John Wiley & Sons, (1962).   Google Scholar

[51]

Y. Privat, E. Trélat and E. Zuazua, Complexity and regularity of maximal energy domains for the wave equation with fixed initial data,, hal-00813647, (2013).   Google Scholar

[52]

Y. Privat, E. Trélat and E. Zuazua, Optimal location of controllers for the one-dimensional wave equation,, to appear in Ann. Inst. H. Poincaré Anal. Non Linéaire, (2013).   Google Scholar

[53]

Y. Privat, E. Trélat and E. Zuazua, Optimal observation of the one-dimensional wave equation,, J. Fourier Anal. Appl., 19 (2013), 514.  doi: 10.1007/s00041-013-9267-4.  Google Scholar

[54]

A. Rahmani, M. Ji, M. Mesbahi and M. Egerstedt, Controllability of multi-agent systems from a graph-theoretic perspective,, SIAM J. Control and Optimization, 48 (2009), 162.  doi: 10.1137/060674909.  Google Scholar

[55]

W. Romey, Individual differences make a difference in the trajectories of simulated schools of fish,, Ecol. Model., 92 (1996), 65.  doi: 10.1016/0304-3800(95)00202-2.  Google Scholar

[56]

R. Sepulchre, D. Paley and N. E. Leonard, Stabilization of planar collective motion: All-to-all communication,, IEEE Transactions on Automatic Control, 52 (2007), 811.  doi: 10.1109/TAC.2007.898077.  Google Scholar

[57]

M. B. Short, M. R. D'Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi and L. B. Chayes, A statistical model of criminal behavior,, Math. Models Methods Appl. Sci., 18 (2008), 1249.  doi: 10.1142/S0218202508003029.  Google Scholar

[58]

G. Stadler, Elliptic optimal control problems with $L^1$-control cost and applications for the placement of control devices,, Comput. Optim. Appl., 44 (2009), 159.  doi: 10.1007/s10589-007-9150-9.  Google Scholar

[59]

K. Sugawara and M. Sano, Cooperative acceleration of task performance: Foraging behavior of interacting multi-robots system,, Physica D, 100 (1997), 343.   Google Scholar

[60]

N. Taleb, "The Black Swan,", Penguin, (2010).   Google Scholar

[61]

J. Toner and Y. Tu, Long-range order in a two-dimensional dynamical XY model: How birds fly together,, Phys. Rev. Lett., 75 (1995), 4326.  doi: 10.1103/PhysRevLett.75.4326.  Google Scholar

[62]

E. Trélat, "Contrôle Optimal. Théorie & Applications,", Vuibert, (2005).   Google Scholar

[63]

T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

[64]

G. Vossen and H. Maurer, $L^1$ minimization in optimal control and applications to robotics,, Optimal Control Applications and Methods, 27 (2006), 301.  doi: 10.1002/oca.781.  Google Scholar

[65]

G. Wachsmuth and D. Wachsmuth, Convergence and regularization results for optimal control problems with sparsity functional,, ESAIM, 17 (2011), 858.  doi: 10.1051/cocv/2010027.  Google Scholar

[66]

C. Yates, R. Erban, C. Escudero, L. Couzin, J. Buhl, L. Kevrekidis, P. Maini and D. Sumpter, Inherent noise can facilitate coherence in collective swarm motion,, Proceedings of the National Academy of Sciences, 106 (2009), 5464.  doi: 10.1073/pnas.0811195106.  Google Scholar

[67]

M. I. Zelikin and V. F. Borisov, "Theory of Chattering Control. With Applications to Astronautics, Robotics, Economics, and Engineering,", Systems & Control: Foundations & Applications, (1994).  doi: 10.1007/978-1-4612-2702-1.  Google Scholar

show all references

References:
[1]

M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, L. Giardina, L. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study,, PNAS, 105 (2008), 1232.  doi: 10.1073/pnas.0711437105.  Google Scholar

[2]

N. Bellomo, M. A. Herrero and A. Tosin, On the dynamics of social conflict: Looking for the Black Swan,, , (2012).   Google Scholar

[3]

A. Blanchet, E. A. Carlen and J. A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model,, J. Funct. Anal., 262 (2012), 2142.  doi: 10.1016/j.jfa.2011.12.012.  Google Scholar

[4]

A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control,", AIMS Series on Applied Mathematics, 2 (2007).   Google Scholar

[5]

S. Camazine, J.-L. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz and E. Bonabeau, "Self-Organization in Biological Systems,", Reprint of the 2001 original, (2001).   Google Scholar

[6]

E. J. Candès, J. Romberg and T. Tao, Stable signal recovery from incomplete and inaccurate measurements,, Comm. Pure Appl. Math., 59 (2006), 1207.  doi: 10.1002/cpa.20124.  Google Scholar

[7]

M. Caponigro, M. Fornasier, B. Piccoli and E. Trélat, Sparse stabilization and control of the Cucker-Smale model,, , ().   Google Scholar

[8]

J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming,, in, (2010), 297.  doi: 10.1007/978-0-8176-4946-3_12.  Google Scholar

[9]

E. Casas, C. Clason and K. Kunisch, Approximation of elliptic control problems in measure spaces with sparse solutions,, SIAM J. Control Optim., 50 (2012), 1735.  doi: 10.1137/110843216.  Google Scholar

[10]

L. Cesari, "Optimization-Theory and Applications. Problems with Ordinary Differential Equations,", Applications of Mathematics (New York), 17 (1983).   Google Scholar

[11]

Y. Chuang, Y. Huang, M. D'Orsogna and A. Bertozzi, Multi-vehicle flocking: Scalability of cooperative control algorithms using pairwise potentials,, in, (2007), 2292.  doi: 10.1109/ROBOT.2007.363661.  Google Scholar

[12]

F. H. Clarke, Y. S. Ledyaev, E. D. Sontag and A. I. Subbotin, Asymptotic controllability implies feedback stabilization,, IEEE Trans. Automat. Control, 42 (1997), 1394.  doi: 10.1109/9.633828.  Google Scholar

[13]

C. Clason and K. Kunisch, A duality-based approach to elliptic control problems in non-reflexive Banach spaces,, ESAIM Control Optim. Calc. Var., 17 (2011), 243.  doi: 10.1051/cocv/2010003.  Google Scholar

[14]

C. Clason and K. Kunisch, A measure space approach to optimal source placement,, Comput. Optim. Appl., 53 (2012), 155.  doi: 10.1007/s10589-011-9444-9.  Google Scholar

[15]

J.-M. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations,, SIAM J. Control Optim., 43 (2004), 549.  doi: 10.1137/S036301290342471X.  Google Scholar

[16]

J.-M. Coron and E. Trélat, Global steady-state stabilization and controllability of 1D semilinear wave equations,, Commun. Contemp. Math., 8 (2006), 535.  doi: 10.1142/S0219199706002209.  Google Scholar

[17]

I. Couzin and N. Franks, Self-organized lane formation and optimized traffic flow in army ants,, Proc. R. Soc. Lond. B, 270 (2002), 139.  doi: 10.1098/rspb.2002.2210.  Google Scholar

[18]

I. Couzin, J. Krause, N. Franks and S. Levin, Effective leadership and decision making in animal groups on the move,, Nature, 433 (2005), 513.  doi: 10.1038/nature03236.  Google Scholar

[19]

A. J. Craig and I. Flügge-Lotz, Investigation of optimal control with a minimum-fuel consumption criterion for a fourth-order plant with two control inputs; synthesis of an efficient suboptimal control,, J. Basic Engineering, 87 (1965), 39.  doi: 10.1115/1.3650527.  Google Scholar

[20]

E. Cristiani, B. Piccoli and A. Tosin, Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints,, in, (2010).  doi: 10.1007/978-0-8176-4946-3_13.  Google Scholar

[21]

E. Cristiani, B. Piccoli and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics,, Multiscale Model. Simul., 9 (2011), 155.  doi: 10.1137/100797515.  Google Scholar

[22]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[23]

F. Cucker and S. Smale, On the mathematics of emergence,, Jpn. J. Math., 2 (2007), 197.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[24]

F. Cucker, S. Smale and D. Zhou, Modeling language evolution,, Found. Comput. Math., 4 (2004), 315.  doi: 10.1007/s10208-003-0101-2.  Google Scholar

[25]

D. L. Donoho, Compressed sensing,, IEEE Trans. Inform. Theory, 52 (2006), 1289.  doi: 10.1109/TIT.2006.871582.  Google Scholar

[26]

B. Düring, D. Matthes and G. Toscani, Kinetic equations modelling wealth redistribution: A comparison of approaches,, Phys. Rev. E, 78 (2008).  doi: 10.1103/PhysRevE.78.056103.  Google Scholar

[27]

Y. Eldar and H. Rauhut, Average case analysis of multichannel sparse recovery using convex relaxation,, IEEE Trans. Inform. Theory, 56 (2010), 505.  doi: 10.1109/TIT.2009.2034789.  Google Scholar

[28]

M. Fornasier and H. Rauhut, Recovery algorithms for vector-valued data with joint sparsity constraints,, SIAM J. Numer. Anal., 46 (2008), 577.  doi: 10.1137/0606668909.  Google Scholar

[29]

M. Fornasier and H. Rauhut, "Handbook of Mathematical Methods in Imaging,", chapter Compressive Sensing, (2010).   Google Scholar

[30]

S.-Y. Ha, T. Ha and J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings,, IEEE Trans. Automat. Control, 55 (2010), 1679.  doi: 10.1109/TAC.2010.2046113.  Google Scholar

[31]

R. Herzog, G. Stadler and G. Wachsmuth, Directional sparsity in optimal control of partial differential equations,, SIAM J. Control and Optimization, 50 (2012), 943.  doi: 10.1137/100815037.  Google Scholar

[32]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I,, Jahresber. Dtsch. Math.-Ver., 105 (2003), 103.   Google Scholar

[33]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. II,, Jahresber. Dtsch. Math.-Ver., 106 (2004), 51.   Google Scholar

[34]

A. Jadbabaie, J. Lin and A. S. Morse, Correction to: "Coordination of groups of mobile autonomous agents using nearest neighbor rules,'', [IEEE Trans. Automat. Control 48 (2003), 48 (2003), 988.   Google Scholar

[35]

J. Ke, J. Minett, C.-P. Au and W.-Y. Wang, Self-organization and selection in the emergence of vocabulary,, Complexity, 7 (2002), 41.  doi: 10.1002/cplx.10030.  Google Scholar

[36]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[37]

A. Lachapelle and M. T. Wolfram, On a mean field game approach modeling congestion and aversion in pedestrian crowds,, Trans. Res.: Part B: Methodological, 45 (2011), 1572.  doi: 10.1016/j.trb.2011.07.011.  Google Scholar

[38]

J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math. (3), 2 (2007), 229.  doi: 10.1007/s11537-007-0657-8.  Google Scholar

[39]

S. Lemercier, A. Jelic, R. Kulpa, J. Hua, J. Fehrenbach, P. Degond, C. Appert-Rolland, S. Donikian and J. Pettré, Realistic following behaviors for crowd simulation,, Computer Graphics Forum, 31 (2012), 489.  doi: 10.1111/j.1467-8659.2012.03028.x.  Google Scholar

[40]

N. Leonard and E. Fiorelli, Virtual leaders, artificial potentials and coordinated control of groups,, in, (2001), 2968.   Google Scholar

[41]

S. Mallat, "A Wavelet Tour of Signal Processing. The Sparse Way,", Third edition, (2009).   Google Scholar

[42]

M. Moussaïd, E. G. Guillot, M. Moreau, J. Fehrenbach, O. Chabiron, S. Lemercier, J. Pettré, C. Appert-Rolland, P. Degond and G. Theraulaz, Traffic instabilities in self-organized pedestrian crowds,, PLoS Computational Biology, 8 (2012).   Google Scholar

[43]

H. Niwa, Self-organizing dynamic model of fish schooling,, J. Theor. Biol., 171 (1994), 123.  doi: 10.1006/jtbi.1994.1218.  Google Scholar

[44]

J. Parrish and L. Edelstein-Keshet, Complexity, pattern, and evolutionary trade-offs in animal aggregation,, Science, 294 (1999), 99.  doi: 10.1126/science.284.5411.99.  Google Scholar

[45]

J. Parrish, S. Viscido and D. Gruenbaum, Self-organized fish schools: An examination of emergent properties,, Biol. Bull., 202 (2002), 296.  doi: 10.2307/1543482.  Google Scholar

[46]

C. S. Patlak, Random walk with persistence and external bias,, Bull. Math. Biophys., 15 (1953), 311.  doi: 10.1007/BF02476407.  Google Scholar

[47]

L. Perea, G. Gómez and P. Elosegui, Extension of the Cucker-Smale control law to space flight formations,, AIAA Journal of Guidance, 32 (2009), 527.  doi: 10.2514/1.36269.  Google Scholar

[48]

B. Perthame, "Transport Equations in Biology,", Frontiers in Mathematics, (2007).   Google Scholar

[49]

K. Pieper and B. Vexler, A priori error analysis for discretization of sparse elliptic optimal control problems in measure space,, SIAM J. Control Optim., 51 (2013), 2788.  doi: 10.1137/120889137.  Google Scholar

[50]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", Interscience Publishers John Wiley & Sons, (1962).   Google Scholar

[51]

Y. Privat, E. Trélat and E. Zuazua, Complexity and regularity of maximal energy domains for the wave equation with fixed initial data,, hal-00813647, (2013).   Google Scholar

[52]

Y. Privat, E. Trélat and E. Zuazua, Optimal location of controllers for the one-dimensional wave equation,, to appear in Ann. Inst. H. Poincaré Anal. Non Linéaire, (2013).   Google Scholar

[53]

Y. Privat, E. Trélat and E. Zuazua, Optimal observation of the one-dimensional wave equation,, J. Fourier Anal. Appl., 19 (2013), 514.  doi: 10.1007/s00041-013-9267-4.  Google Scholar

[54]

A. Rahmani, M. Ji, M. Mesbahi and M. Egerstedt, Controllability of multi-agent systems from a graph-theoretic perspective,, SIAM J. Control and Optimization, 48 (2009), 162.  doi: 10.1137/060674909.  Google Scholar

[55]

W. Romey, Individual differences make a difference in the trajectories of simulated schools of fish,, Ecol. Model., 92 (1996), 65.  doi: 10.1016/0304-3800(95)00202-2.  Google Scholar

[56]

R. Sepulchre, D. Paley and N. E. Leonard, Stabilization of planar collective motion: All-to-all communication,, IEEE Transactions on Automatic Control, 52 (2007), 811.  doi: 10.1109/TAC.2007.898077.  Google Scholar

[57]

M. B. Short, M. R. D'Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi and L. B. Chayes, A statistical model of criminal behavior,, Math. Models Methods Appl. Sci., 18 (2008), 1249.  doi: 10.1142/S0218202508003029.  Google Scholar

[58]

G. Stadler, Elliptic optimal control problems with $L^1$-control cost and applications for the placement of control devices,, Comput. Optim. Appl., 44 (2009), 159.  doi: 10.1007/s10589-007-9150-9.  Google Scholar

[59]

K. Sugawara and M. Sano, Cooperative acceleration of task performance: Foraging behavior of interacting multi-robots system,, Physica D, 100 (1997), 343.   Google Scholar

[60]

N. Taleb, "The Black Swan,", Penguin, (2010).   Google Scholar

[61]

J. Toner and Y. Tu, Long-range order in a two-dimensional dynamical XY model: How birds fly together,, Phys. Rev. Lett., 75 (1995), 4326.  doi: 10.1103/PhysRevLett.75.4326.  Google Scholar

[62]

E. Trélat, "Contrôle Optimal. Théorie & Applications,", Vuibert, (2005).   Google Scholar

[63]

T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

[64]

G. Vossen and H. Maurer, $L^1$ minimization in optimal control and applications to robotics,, Optimal Control Applications and Methods, 27 (2006), 301.  doi: 10.1002/oca.781.  Google Scholar

[65]

G. Wachsmuth and D. Wachsmuth, Convergence and regularization results for optimal control problems with sparsity functional,, ESAIM, 17 (2011), 858.  doi: 10.1051/cocv/2010027.  Google Scholar

[66]

C. Yates, R. Erban, C. Escudero, L. Couzin, J. Buhl, L. Kevrekidis, P. Maini and D. Sumpter, Inherent noise can facilitate coherence in collective swarm motion,, Proceedings of the National Academy of Sciences, 106 (2009), 5464.  doi: 10.1073/pnas.0811195106.  Google Scholar

[67]

M. I. Zelikin and V. F. Borisov, "Theory of Chattering Control. With Applications to Astronautics, Robotics, Economics, and Engineering,", Systems & Control: Foundations & Applications, (1994).  doi: 10.1007/978-1-4612-2702-1.  Google Scholar

[1]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

[2]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[3]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[4]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[5]

Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155

[6]

Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021001

[7]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[8]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[9]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[10]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[11]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

[12]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[13]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

[14]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[15]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[16]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[17]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[18]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[19]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[20]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (69)
  • HTML views (0)
  • Cited by (42)

[Back to Top]