December  2013, 3(4): 467-487. doi: 10.3934/mcrf.2013.3.467

Ricci curvatures in Carnot groups

1. 

Université de Nice-Sophia Antipolis, Labo. J.-A. Dieudonné, UMR CNRS 6621, Parc Valrose, 06108 Nice Cedex 02, France

Received  December 2012 Revised  February 2013 Published  September 2013

We study metric contraction properties for metric spaces associated with left-invariant sub-Riemannian metrics on Carnot groups. We show that ideal sub-Riemannian structures on Carnot groups satisfy such properties and give a lower bound of possible curvature exponents in terms of the datas.
Citation: Ludovic Rifford. Ricci curvatures in Carnot groups. Mathematical Control & Related Fields, 2013, 3 (4) : 467-487. doi: 10.3934/mcrf.2013.3.467
References:
[1]

A. Agrachev, Any sub-Riemannian metric has points of smoothness,, Dokl. Akad. Nauk, 424 (2009), 295.  doi: 10.1134/S106456240901013X.  Google Scholar

[2]

A. Agrachev, D. Barilari and U. Boscain, Introduction to Riemannian and sub-Riemannian geometry,, to appear., ().   Google Scholar

[3]

A. Agrachev and P. Lee, Optimal transportation under nonholonomic constraints,, Trans. Amer. Math. Soc., 361 (2009), 6019.  doi: 10.1090/S0002-9947-09-04813-2.  Google Scholar

[4]

A. Agrachev and P. Lee, Generalized Ricci curvature bounds for three dimensional contact subriemannian manifolds,, preprint, (2009).   Google Scholar

[5]

V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits,, Ann. Inst. Fourier (Grenoble), 16 (1966), 319.  doi: 10.5802/aif.233.  Google Scholar

[6]

A. Bellaïche, The tangent space in sub-Riemannian geometry,, in, 144 (1996), 1.  doi: 10.1007/978-3-0348-9210-0_1.  Google Scholar

[7]

P. Cannarsa and L. Rifford, Semiconcavity results for optimal control problems admitting no singular minimizing controls,, Ann. Inst. H. Poincaré Non Linéaire, 25 (2008), 773.  doi: 10.1016/j.anihpc.2007.07.005.  Google Scholar

[8]

P. Cannarsa and C. Sinestrari, "Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control,", Progress in Nonlinear Differential Equations and their Applications, 58 (2004).   Google Scholar

[9]

M. Castelpietra and L. Rifford, Regularity properties of the distance function to conjugate and cut loci for viscosity solutions of Hamilton-Jacobi equations and applications in Riemannian geometry,, ESAIM Control Optim. Calc. Var., 16 (2010), 695.  doi: 10.1051/cocv/2009020.  Google Scholar

[10]

A. Figalli and L. Rifford, Mass transportation on sub-Riemannian manifolds,, Geom. Funct. Anal., 20 (2010), 124.  doi: 10.1007/s00039-010-0053-z.  Google Scholar

[11]

S. Gallot, D. Hulin and J. Lafontaine, "Riemannian Geometry,", Third edition, (2004).  doi: 10.1007/978-3-642-18855-8.  Google Scholar

[12]

C. Golé and R. Karidi, A note on Carnot geodesics in nilpotent Lie groups,, J. Dynam. Control Systems, 1 (1995), 535.  doi: 10.1007/BF02255895.  Google Scholar

[13]

M. Gromov, "Metric Structures for Riemannian and Non-Riemannian Spaces,", Progress in Mathematics, (1999).   Google Scholar

[14]

J. Itoh and M. Tanaka, The Lipschitz continuity of the distance function to the cut locus,, Trans. Amer. Math. Soc., 353 (2001), 21.  doi: 10.1090/S0002-9947-00-02564-2.  Google Scholar

[15]

N. Juillet, Geometric inequalities and generalized Ricci bounds in the Heisenberg group,, Int. Math. Res. Not. IMRN, (2009), 2347.  doi: 10.1093/imrn/rnp019.  Google Scholar

[16]

N. Juillet, On a method to disprove generalized Brunn-Minkowski inequalities,, in, 57 (2010), 189.   Google Scholar

[17]

E. Le Donne, Lecture notes on sub-Riemannian geometry,, preprint, (2010).   Google Scholar

[18]

Y. Li and L. Nirenberg, The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations,, Comm. Pure Appl. Math., 58 (2005), 85.  doi: 10.1002/cpa.20051.  Google Scholar

[19]

J. Lott and C. Villani, Weak curvature conditions and functional inequalities,, J. Funct. Anal., 245 (2007), 311.  doi: 10.1016/j.jfa.2006.10.018.  Google Scholar

[20]

J. Milnor, Curvatures of left-invariant metrics on Lie groups,, Advances in Math., 21 (1976), 293.  doi: 10.1016/S0001-8708(76)80002-3.  Google Scholar

[21]

J. Mitchell, On Carnot-Carathéodory spaces,, J. Differential Geom., 21 (1985), 35.   Google Scholar

[22]

R. Montgomery, A tour of sub-Riemannian geometries, their geodesics and applications,, Mathematical Surveys and Monographs, (2002).   Google Scholar

[23]

S. Ohta, On the measure contraction property of metric measure spaces,, Comment. Math. Helv., 82 (2007), 805.  doi: 10.4171/CMH/110.  Google Scholar

[24]

L. Rifford, Sub-Riemannian geometry and optimal transport,, preprint, (2012).   Google Scholar

[25]

K. -T. Sturm, On the geometry of metric measure spaces. I,, Acta Math., 196 (2006), 65.  doi: 10.1007/s11511-006-0002-8.  Google Scholar

[26]

K.-T. Sturm, On the geometry of metric measure spaces. II,, Acta Math., 196 (2006), 133.  doi: 10.1007/s11511-006-0003-7.  Google Scholar

[27]

C. Villani, "Optimal Transport. Old and New,", Grundlehren der Mathematischen Wissenschaften, 338 (2009).  doi: 10.1007/978-3-540-71050-9.  Google Scholar

show all references

References:
[1]

A. Agrachev, Any sub-Riemannian metric has points of smoothness,, Dokl. Akad. Nauk, 424 (2009), 295.  doi: 10.1134/S106456240901013X.  Google Scholar

[2]

A. Agrachev, D. Barilari and U. Boscain, Introduction to Riemannian and sub-Riemannian geometry,, to appear., ().   Google Scholar

[3]

A. Agrachev and P. Lee, Optimal transportation under nonholonomic constraints,, Trans. Amer. Math. Soc., 361 (2009), 6019.  doi: 10.1090/S0002-9947-09-04813-2.  Google Scholar

[4]

A. Agrachev and P. Lee, Generalized Ricci curvature bounds for three dimensional contact subriemannian manifolds,, preprint, (2009).   Google Scholar

[5]

V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits,, Ann. Inst. Fourier (Grenoble), 16 (1966), 319.  doi: 10.5802/aif.233.  Google Scholar

[6]

A. Bellaïche, The tangent space in sub-Riemannian geometry,, in, 144 (1996), 1.  doi: 10.1007/978-3-0348-9210-0_1.  Google Scholar

[7]

P. Cannarsa and L. Rifford, Semiconcavity results for optimal control problems admitting no singular minimizing controls,, Ann. Inst. H. Poincaré Non Linéaire, 25 (2008), 773.  doi: 10.1016/j.anihpc.2007.07.005.  Google Scholar

[8]

P. Cannarsa and C. Sinestrari, "Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control,", Progress in Nonlinear Differential Equations and their Applications, 58 (2004).   Google Scholar

[9]

M. Castelpietra and L. Rifford, Regularity properties of the distance function to conjugate and cut loci for viscosity solutions of Hamilton-Jacobi equations and applications in Riemannian geometry,, ESAIM Control Optim. Calc. Var., 16 (2010), 695.  doi: 10.1051/cocv/2009020.  Google Scholar

[10]

A. Figalli and L. Rifford, Mass transportation on sub-Riemannian manifolds,, Geom. Funct. Anal., 20 (2010), 124.  doi: 10.1007/s00039-010-0053-z.  Google Scholar

[11]

S. Gallot, D. Hulin and J. Lafontaine, "Riemannian Geometry,", Third edition, (2004).  doi: 10.1007/978-3-642-18855-8.  Google Scholar

[12]

C. Golé and R. Karidi, A note on Carnot geodesics in nilpotent Lie groups,, J. Dynam. Control Systems, 1 (1995), 535.  doi: 10.1007/BF02255895.  Google Scholar

[13]

M. Gromov, "Metric Structures for Riemannian and Non-Riemannian Spaces,", Progress in Mathematics, (1999).   Google Scholar

[14]

J. Itoh and M. Tanaka, The Lipschitz continuity of the distance function to the cut locus,, Trans. Amer. Math. Soc., 353 (2001), 21.  doi: 10.1090/S0002-9947-00-02564-2.  Google Scholar

[15]

N. Juillet, Geometric inequalities and generalized Ricci bounds in the Heisenberg group,, Int. Math. Res. Not. IMRN, (2009), 2347.  doi: 10.1093/imrn/rnp019.  Google Scholar

[16]

N. Juillet, On a method to disprove generalized Brunn-Minkowski inequalities,, in, 57 (2010), 189.   Google Scholar

[17]

E. Le Donne, Lecture notes on sub-Riemannian geometry,, preprint, (2010).   Google Scholar

[18]

Y. Li and L. Nirenberg, The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations,, Comm. Pure Appl. Math., 58 (2005), 85.  doi: 10.1002/cpa.20051.  Google Scholar

[19]

J. Lott and C. Villani, Weak curvature conditions and functional inequalities,, J. Funct. Anal., 245 (2007), 311.  doi: 10.1016/j.jfa.2006.10.018.  Google Scholar

[20]

J. Milnor, Curvatures of left-invariant metrics on Lie groups,, Advances in Math., 21 (1976), 293.  doi: 10.1016/S0001-8708(76)80002-3.  Google Scholar

[21]

J. Mitchell, On Carnot-Carathéodory spaces,, J. Differential Geom., 21 (1985), 35.   Google Scholar

[22]

R. Montgomery, A tour of sub-Riemannian geometries, their geodesics and applications,, Mathematical Surveys and Monographs, (2002).   Google Scholar

[23]

S. Ohta, On the measure contraction property of metric measure spaces,, Comment. Math. Helv., 82 (2007), 805.  doi: 10.4171/CMH/110.  Google Scholar

[24]

L. Rifford, Sub-Riemannian geometry and optimal transport,, preprint, (2012).   Google Scholar

[25]

K. -T. Sturm, On the geometry of metric measure spaces. I,, Acta Math., 196 (2006), 65.  doi: 10.1007/s11511-006-0002-8.  Google Scholar

[26]

K.-T. Sturm, On the geometry of metric measure spaces. II,, Acta Math., 196 (2006), 133.  doi: 10.1007/s11511-006-0003-7.  Google Scholar

[27]

C. Villani, "Optimal Transport. Old and New,", Grundlehren der Mathematischen Wissenschaften, 338 (2009).  doi: 10.1007/978-3-540-71050-9.  Google Scholar

[1]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[2]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]