March  2014, 4(1): 1-15. doi: 10.3934/mcrf.2014.4.1

Null controllability of retarded parabolic equations

1. 

Laboratoire de Mathématiques de Besançon, UMR CNRS 6623, Université de Franche-Comté, F25030 Besançon Cedex, France, France

2. 

École Nationale Supérieure des Travaux Publics, Rue Sidi Garidi, BP 32, 16051 Alger, Algeria

3. 

Département de Mathématiques, Faculté des Sciences Semlalia, Université Cadi Ayyad, Marrakech 40000, B.P. 2390

Received  May 2012 Revised  December 2012 Published  December 2013

We address in this work the null controllability problem for a linear heat equation with delay parameters. The control is exerted on a subdomain and we show how the global Carleman estimate due to Fursikov and Imanuvilov can be applied to derive results in this direction.
Citation: Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control and Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1
References:
[1]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems, J. Evol. Equ., 9 (2009), 267-291. Available from: http://hal.archives-ouvertes.fr/hal-00290867/fr/. doi: 10.1007/s00028-009-0008-8.

[2]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, Controllability for a class of reaction-diffusion systems: The generalized Kalman's condition, C. R. Math. Acad. Sci. Paris, 345 (2007), 543-548. doi: 10.1016/j.crma.2007.10.023.

[3]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differ. Equ. Appl., 1 (2009), 427-457. doi: 10.7153/dea-01-24.

[4]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials, J. Math. Pures Appl. (9), 96 (2011), 555-590. Available from: http://hal.archives-ouvertes.fr/hal-00539825/fr/. doi: 10.1016/j.matpur.2011.06.005.

[5]

M. Artola, Sur les perturbations des équations d'évolution: Application à des problèmes avec retard, Ann. Sci. École Norm. Sup. (4), 2 (1969), 137-253.

[6]

V. Barbu, Exact controllability of the superlinear heat equation, Appl. Math. Optim., 42 (2000), 73-89. doi: 10.1007/s002450010004.

[7]

R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, 21, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4224-6.

[8]

E. Fernández-Cara, M. González-Burgos and L. de Teresa, Boundary controllability of parabolic coupled equations, J. Funct. Anal., 259 (2010), 1720-1758. doi: 10.1016/j.jfa.2010.06.003.

[9]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 17 (2000), 583-616. doi: 10.1016/S0294-1449(00)00117-7.

[10]

A. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, Korea, 1996.

[11]

S.-I. Nakagiri, Optimal control of linear retarded systems in Banach spaces, J. Math. Anal. and Appl., 120 (1986), 169-210. doi: 10.1016/0022-247X(86)90210-6.

[12]

S.-I. Nakagiri and M. Yamamoto, Controllability and observability of linear retarded systems in Banach spaces, Int. J. Control, 49 (1989), 1489-1504.

[13]

J. Zabczyk, Mathematical Control Theory: An Introduction, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992.

show all references

References:
[1]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems, J. Evol. Equ., 9 (2009), 267-291. Available from: http://hal.archives-ouvertes.fr/hal-00290867/fr/. doi: 10.1007/s00028-009-0008-8.

[2]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, Controllability for a class of reaction-diffusion systems: The generalized Kalman's condition, C. R. Math. Acad. Sci. Paris, 345 (2007), 543-548. doi: 10.1016/j.crma.2007.10.023.

[3]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differ. Equ. Appl., 1 (2009), 427-457. doi: 10.7153/dea-01-24.

[4]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials, J. Math. Pures Appl. (9), 96 (2011), 555-590. Available from: http://hal.archives-ouvertes.fr/hal-00539825/fr/. doi: 10.1016/j.matpur.2011.06.005.

[5]

M. Artola, Sur les perturbations des équations d'évolution: Application à des problèmes avec retard, Ann. Sci. École Norm. Sup. (4), 2 (1969), 137-253.

[6]

V. Barbu, Exact controllability of the superlinear heat equation, Appl. Math. Optim., 42 (2000), 73-89. doi: 10.1007/s002450010004.

[7]

R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, 21, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4224-6.

[8]

E. Fernández-Cara, M. González-Burgos and L. de Teresa, Boundary controllability of parabolic coupled equations, J. Funct. Anal., 259 (2010), 1720-1758. doi: 10.1016/j.jfa.2010.06.003.

[9]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 17 (2000), 583-616. doi: 10.1016/S0294-1449(00)00117-7.

[10]

A. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, Korea, 1996.

[11]

S.-I. Nakagiri, Optimal control of linear retarded systems in Banach spaces, J. Math. Anal. and Appl., 120 (1986), 169-210. doi: 10.1016/0022-247X(86)90210-6.

[12]

S.-I. Nakagiri and M. Yamamoto, Controllability and observability of linear retarded systems in Banach spaces, Int. J. Control, 49 (1989), 1489-1504.

[13]

J. Zabczyk, Mathematical Control Theory: An Introduction, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992.

[1]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[2]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 555-566. doi: 10.3934/naco.2020055

[3]

Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088

[4]

Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control and Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037

[5]

Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4207-4222. doi: 10.3934/dcdsb.2018133

[6]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control and Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[7]

Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations and Control Theory, 2020, 9 (1) : 1-25. doi: 10.3934/eect.2020014

[8]

Yanpeng Jin, Ying Fu. Global Carleman estimate and its applications for a sixth-order equation related to thin solid films. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022072

[9]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3837-3849. doi: 10.3934/dcdss.2020444

[10]

Tohru Nakamura, Shinya Nishibata. Energy estimate for a linear symmetric hyperbolic-parabolic system in half line. Kinetic and Related Models, 2013, 6 (4) : 883-892. doi: 10.3934/krm.2013.6.883

[11]

Thuy N. T. Nguyen. Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and applications to controllability. Mathematical Control and Related Fields, 2014, 4 (2) : 203-259. doi: 10.3934/mcrf.2014.4.203

[12]

Genni Fragnelli. Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 687-701. doi: 10.3934/dcdss.2013.6.687

[13]

Guillaume Olive. Boundary approximate controllability of some linear parabolic systems. Evolution Equations and Control Theory, 2014, 3 (1) : 167-189. doi: 10.3934/eect.2014.3.167

[14]

Farid Ammar Khodja, Franz Chouly, Michel Duprez. Partial null controllability of parabolic linear systems. Mathematical Control and Related Fields, 2016, 6 (2) : 185-216. doi: 10.3934/mcrf.2016001

[15]

Domingo Tarzia, Carolina Bollo, Claudia Gariboldi. Convergence of simultaneous distributed-boundary parabolic optimal control problems. Evolution Equations and Control Theory, 2020, 9 (4) : 1187-1201. doi: 10.3934/eect.2020045

[16]

Mo Chen, Lionel Rosier. Exact controllability of the linear Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3889-3916. doi: 10.3934/dcdsb.2020080

[17]

Larbi Berrahmoune. Null controllability for distributed systems with time-varying constraint and applications to parabolic-like equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3275-3303. doi: 10.3934/dcdsb.2020062

[18]

Giuseppe Floridia, Hiroshi Takase, Masahiro Yamamoto. A Carleman estimate and an energy method for a first-order symmetric hyperbolic system. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022016

[19]

El Mustapha Ait Ben Hassi, Farid Ammar khodja, Abdelkarim Hajjaj, Lahcen Maniar. Carleman Estimates and null controllability of coupled degenerate systems. Evolution Equations and Control Theory, 2013, 2 (3) : 441-459. doi: 10.3934/eect.2013.2.441

[20]

Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control and Related Fields, 2014, 4 (4) : 521-554. doi: 10.3934/mcrf.2014.4.521

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (185)
  • HTML views (0)
  • Cited by (0)

[Back to Top]