March  2014, 4(1): 101-113. doi: 10.3934/mcrf.2014.4.101

Almost periodic solutions for a weakly dissipated hybrid system

1. 

Universitatea din Craiova, Craiova 200585, Romania

2. 

Institute of Mathematics, Federal University of Rio de Janeiro, UFRJ, P.O. Box 68530, CEP 21941-909, Rio de Janeiro, RJ, Brazil

Received  May 2012 Revised  January 2013 Published  December 2013

We consider a hybrid system coupling an elastic string with a rigid body at one end and we study the existence of an almost periodic solution when an almost periodic force $f$ acts on the body. The weak dissipation of the system does not allow to show the relative compactness of the trajectories which generally implies the existence of such solutions. Instead, we use Fourier analysis to show that the existence or not of the almost periodic solutions depends on the regularity and the exponents of the almost periodic nonhomogeneous term $f$.
Citation: Sorin Micu, Ademir F. Pazoto. Almost periodic solutions for a weakly dissipated hybrid system. Mathematical Control & Related Fields, 2014, 4 (1) : 101-113. doi: 10.3934/mcrf.2014.4.101
References:
[1]

B. d'Andréa-Novel, F. Boustany, F. Conrad and B. P. Rao, Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane,, Math. Control Signals Systems, 7 (1994), 1.  doi: 10.1007/BF01211483.  Google Scholar

[2]

G. Avalos and I. Lasiecka, Uniform decay rates for solutions to a structural acoustics model with nonlinear dissipation,, Appl. Math. Comput. Sci., 8 (1998), 287.   Google Scholar

[3]

H. T. Banks and R. C. Smith, Feedback control of noise in a 2-D nonlinear structural acoustics model,, Discrete Contin. Dynam. Systems, 1 (1995), 119.   Google Scholar

[4]

H. Bohr, Almost Periodic Functions,, Chelsea Publishing Company, (1947).   Google Scholar

[5]

C. Castro and E. Zuazua, Boundary controllability of a hybrid system consisting in two flexible beams connected by a point mass,, SIAM J. Control Optim., 36 (1998), 1576.  doi: 10.1137/S0363012997316378.  Google Scholar

[6]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations,, Oxford Lecture Series in Mathematics and its Applications, (1998).   Google Scholar

[7]

N. Cîndea, S. Micu and A. F. Pazoto, Periodic solutions for a weakly dissipated hybrid system,, J. Math. Anal. Appl., 385 (2012), 399.   Google Scholar

[8]

L. Cot, J.-P. Raymond and J. Vancostenoble, Exact controllability of an aeroacoustic model with a Neumann and a Dirichlet boundary control,, SIAM J. Control Optim., 48 (2009), 1489.  doi: 10.1137/070685609.  Google Scholar

[9]

C. Corduneanu, Almost Periodic Oscillations and Waves,, Springer, (2009).  doi: 10.1007/978-0-387-09819-7.  Google Scholar

[10]

A. M. Fink, Almost Periodic Differetial Equation,, Lecture Notes in Mathematics, (1974).   Google Scholar

[11]

S. Hansen and E. Zuazua, Exact controllability and stabilization of strings with point masses,, SIAM J. Cont. Optim., 33 (1995), 1357.  doi: 10.1137/S0363012993248347.  Google Scholar

[12]

A. Haraux, Semi-linear hyperbolic problems in bounded domains,, Math. Rep., 3 (1987), 1.   Google Scholar

[13]

A. E. Ingham, Some trigonometric inequalities with applications to the theory of series,, Math. Zeits., 41 (1936), 367.  doi: 10.1007/BF01180426.  Google Scholar

[14]

J. E. Lagnese, Modelling and controllability of plate-beam systems,, J. Math. Systems Estim. Control, 4 (1994).   Google Scholar

[15]

E. B. Lee and Y. C. You, Stabilization of a vibrating string system linked by point masses,, in Control of Boundaries and Stabilization (Clermont-Ferrand, (1988), 177.   Google Scholar

[16]

E. B. Lee and Y. C. You, Stabilization of a hybrid (string/point mass) system,, in Proc. Fifth Int. Conf. Syst. Eng. (Dayton, (1987).   Google Scholar

[17]

B. M. Levitan and V. V. Zhikov, Almost periodic functions and differential equations,, Cambridge University Press, (1982).   Google Scholar

[18]

W. Littman and L. Markus, Some recent results on control and stabilization of flexible structures,, in Proc. COMCON on Stabilization of Flexible Structures (Montpellier, (1987), 151.   Google Scholar

[19]

W. Littman and L. Markus, Exact boundary controllability of a hybrid system of elasticity,, Arch. Rational Mech. Anal., 103 (1988), 193.  doi: 10.1007/BF00251758.  Google Scholar

[20]

S. Micu and E. Zuazua, Asymptotics for the spectrum of a fluid/structure hybrid system arising in the control of noise,, SIAM J. Math. Anal., 29 (1998), 967.  doi: 10.1137/S0036141096312349.  Google Scholar

[21]

O. Morgul, B. Rao and F. Conrad, On the stabilization of a cable with a tip mass,, IEEE Trans. Automat. Control, 39 (1994), 2140.  doi: 10.1109/9.328811.  Google Scholar

[22]

B. Rao, Uniform stabilization of a hybrid system of elasticity,, SIAM J. Control Optim., 33 (1995), 440.  doi: 10.1137/S0363012992239879.  Google Scholar

[23]

B. Rao, Decay estimates of solutions for a hybrid system of flexible structures,, European J. Appl. Math., 4 (1993), 303.  doi: 10.1017/S0956792500001133.  Google Scholar

[24]

J.-P. Raymond and M. Vanninathan, Exact controllability in fluid-solid structure: The Helmholtz model,, ESAIM Control Optim. Calc. Var., 11 (2005), 180.  doi: 10.1051/cocv:2005006.  Google Scholar

show all references

References:
[1]

B. d'Andréa-Novel, F. Boustany, F. Conrad and B. P. Rao, Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane,, Math. Control Signals Systems, 7 (1994), 1.  doi: 10.1007/BF01211483.  Google Scholar

[2]

G. Avalos and I. Lasiecka, Uniform decay rates for solutions to a structural acoustics model with nonlinear dissipation,, Appl. Math. Comput. Sci., 8 (1998), 287.   Google Scholar

[3]

H. T. Banks and R. C. Smith, Feedback control of noise in a 2-D nonlinear structural acoustics model,, Discrete Contin. Dynam. Systems, 1 (1995), 119.   Google Scholar

[4]

H. Bohr, Almost Periodic Functions,, Chelsea Publishing Company, (1947).   Google Scholar

[5]

C. Castro and E. Zuazua, Boundary controllability of a hybrid system consisting in two flexible beams connected by a point mass,, SIAM J. Control Optim., 36 (1998), 1576.  doi: 10.1137/S0363012997316378.  Google Scholar

[6]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations,, Oxford Lecture Series in Mathematics and its Applications, (1998).   Google Scholar

[7]

N. Cîndea, S. Micu and A. F. Pazoto, Periodic solutions for a weakly dissipated hybrid system,, J. Math. Anal. Appl., 385 (2012), 399.   Google Scholar

[8]

L. Cot, J.-P. Raymond and J. Vancostenoble, Exact controllability of an aeroacoustic model with a Neumann and a Dirichlet boundary control,, SIAM J. Control Optim., 48 (2009), 1489.  doi: 10.1137/070685609.  Google Scholar

[9]

C. Corduneanu, Almost Periodic Oscillations and Waves,, Springer, (2009).  doi: 10.1007/978-0-387-09819-7.  Google Scholar

[10]

A. M. Fink, Almost Periodic Differetial Equation,, Lecture Notes in Mathematics, (1974).   Google Scholar

[11]

S. Hansen and E. Zuazua, Exact controllability and stabilization of strings with point masses,, SIAM J. Cont. Optim., 33 (1995), 1357.  doi: 10.1137/S0363012993248347.  Google Scholar

[12]

A. Haraux, Semi-linear hyperbolic problems in bounded domains,, Math. Rep., 3 (1987), 1.   Google Scholar

[13]

A. E. Ingham, Some trigonometric inequalities with applications to the theory of series,, Math. Zeits., 41 (1936), 367.  doi: 10.1007/BF01180426.  Google Scholar

[14]

J. E. Lagnese, Modelling and controllability of plate-beam systems,, J. Math. Systems Estim. Control, 4 (1994).   Google Scholar

[15]

E. B. Lee and Y. C. You, Stabilization of a vibrating string system linked by point masses,, in Control of Boundaries and Stabilization (Clermont-Ferrand, (1988), 177.   Google Scholar

[16]

E. B. Lee and Y. C. You, Stabilization of a hybrid (string/point mass) system,, in Proc. Fifth Int. Conf. Syst. Eng. (Dayton, (1987).   Google Scholar

[17]

B. M. Levitan and V. V. Zhikov, Almost periodic functions and differential equations,, Cambridge University Press, (1982).   Google Scholar

[18]

W. Littman and L. Markus, Some recent results on control and stabilization of flexible structures,, in Proc. COMCON on Stabilization of Flexible Structures (Montpellier, (1987), 151.   Google Scholar

[19]

W. Littman and L. Markus, Exact boundary controllability of a hybrid system of elasticity,, Arch. Rational Mech. Anal., 103 (1988), 193.  doi: 10.1007/BF00251758.  Google Scholar

[20]

S. Micu and E. Zuazua, Asymptotics for the spectrum of a fluid/structure hybrid system arising in the control of noise,, SIAM J. Math. Anal., 29 (1998), 967.  doi: 10.1137/S0036141096312349.  Google Scholar

[21]

O. Morgul, B. Rao and F. Conrad, On the stabilization of a cable with a tip mass,, IEEE Trans. Automat. Control, 39 (1994), 2140.  doi: 10.1109/9.328811.  Google Scholar

[22]

B. Rao, Uniform stabilization of a hybrid system of elasticity,, SIAM J. Control Optim., 33 (1995), 440.  doi: 10.1137/S0363012992239879.  Google Scholar

[23]

B. Rao, Decay estimates of solutions for a hybrid system of flexible structures,, European J. Appl. Math., 4 (1993), 303.  doi: 10.1017/S0956792500001133.  Google Scholar

[24]

J.-P. Raymond and M. Vanninathan, Exact controllability in fluid-solid structure: The Helmholtz model,, ESAIM Control Optim. Calc. Var., 11 (2005), 180.  doi: 10.1051/cocv:2005006.  Google Scholar

[1]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[2]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[3]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[4]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[5]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[6]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[7]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[8]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[9]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[10]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[11]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[12]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[13]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[14]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[15]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[16]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[17]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[18]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[19]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[20]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]