June  2014, 4(2): 125-160. doi: 10.3934/mcrf.2014.4.125

Local controllability of 1D Schrödinger equations with bilinear control and minimal time

1. 

CMLS, Ecole Polytechnique, 91 128 Palaiseau cedex, France, France

Received  July 2012 Revised  January 2013 Published  February 2014

We consider a linear Schrödinger equation, on a bounded interval, with bilinear control.
    In [10], Beauchard and Laurent prove that, under an appropriate non degeneracy assumption, this system is controllable, locally around the ground state, in arbitrary time. In [18], Coron proves that a positive minimal time is required for this controllability result, on a particular degenerate example.
    In this article, we propose a general context for the local controllability to hold in large time, but not in small time. The existence of a positive minimal time is closely related to the behaviour of the second order term, in the power series expansion of the solution.
Citation: Karine Beauchard, Morgan Morancey. Local controllability of 1D Schrödinger equations with bilinear control and minimal time. Mathematical Control and Related Fields, 2014, 4 (2) : 125-160. doi: 10.3934/mcrf.2014.4.125
References:
[1]

R. Adami and U. Boscain, Controllability of the Schroedinger Equation via Intersection of Eigenvalues, Proceedings of the 44rd IEEE Conference on Decision and Control December 12-15, 2005, Seville, (Spain). Also on 'Control Systems: Theory, Numerics and Applications, Roma, Italia 30 Mar - 1 Apr 2005, POS, Proceeding of science.

[2]

J. Ball, J. Marsden and M. Slemrod, Controllability for distributed bilinear systems, SIAM J. Control and Optim., 20 (1982), 575-597. doi: 10.1137/0320042.

[3]

L. Baudouin, A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical nuclear dynamics, Port. Math. (N.S.), 63 (2006), 293-325.

[4]

L. Baudouin, O. Kavian and J.-P. Puel, Regularity for a Schrödinger equation with singular potential and application to bilinear optimal control, J. of Differential Equations, 216 (2005), 188-222. doi: 10.1016/j.jde.2005.04.006.

[5]

L. Baudouin and J. Salomon, Constructive solutions of a bilinear control problem for a Schrödinger equation, Systems and Control Letters, 57 (2008), 453-464. doi: 10.1016/j.sysconle.2007.11.002.

[6]

K. Beauchard, Local Controllability of a 1-D Schrödinger equation, J. Math. Pures et Appl., 84 (2005), 851-956. doi: 10.1016/j.matpur.2005.02.005.

[7]

K. Beauchard, Controllability of a quantum particle in a 1D variable domain, ESAIM:COCV, 14 (2008), 105-147. doi: 10.1051/cocv:2007047.

[8]

K. Beauchard, Local controllability and non controllability for a 1D wave equation with bilinear control, J. Diff. Eq., 250 (2010), 2064-2098. doi: 10.1016/j.jde.2010.10.008.

[9]

K. Beauchard and J.-M. Coron, Controllability of a quantum particle in a moving potential well, J. Functional Analysis, 232 (2006), 328-389. doi: 10.1016/j.jfa.2005.03.021.

[10]

K. Beauchard and C. Laurent, Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control, J. Math. Pures Appl., 94 (2010), 520-554. doi: 10.1016/j.matpur.2010.04.001.

[11]

K. Beauchard and M. Mirrahimi, Practical stabilization of a quantum particle in a one-dimensional infinite square potential well, SIAM J. Contr. Optim., 48 (2009), 1179-1205. doi: 10.1137/070704204.

[12]

J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer Series in Operations Research, Springer-Verlag, New York, 2000.

[13]

U. Boscain, M. Caponigro, T. Chambrion and M. Sigalotti, A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule, Communications on Mathematical Physics, 311 (2012), 423-455. doi: 10.1007/s00220-012-1441-z.

[14]

N. Boussaïd, M. Caponigro and T. Chambrion, Weakly-coupled systems in quantum control, IEEE Transactions on Automatic Control, 58 (2013), 2205-2216. arXiv:1109.1900. doi: 10.1109/TAC.2013.2255948.

[15]

E. Cancès, C. L. Bris and M. Pilot, Contrôle optimal bilinéaire d'une équation de Schrödinger, CRAS Paris, 330 (2000), 567-571. doi: 10.1016/S0764-4442(00)00227-5.

[16]

E. Cerpa and E. Crépeau, Boundary controlability for the non linear korteweg-de vries equation on any critical domain, Ann. IHP Analyse Non Linéaire, 26 (2009), 457-475. doi: 10.1016/j.anihpc.2007.11.003.

[17]

T. Chambrion, P. Mason, M. Sigalotti and M. Boscain, Controllability of the discrete-spectrum Schrödinger equation driven by an external field, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 329-349. doi: 10.1016/j.anihpc.2008.05.001.

[18]

J.-M. Coron, On the small-time local controllability of a quantum particule in a moving one-dimensional infinite square potential well, C. R. Acad. Sciences Paris, Ser. I, 342 (2006), 103-108. doi: 10.1016/j.crma.2005.11.004.

[19]

J.-M. Coron, Control and Nonlinearity, vol. 136, Mathematical Surveys and Monographs, 2007.

[20]

S. Ervedoza and J.-P. Puel, Approximate controllability for a system of schrödinger equations modeling a single trapped ion, Ann.IHP: Nonlinear Analysis, 26 (2009), 2111-2136. doi: 10.1016/j.anihpc.2009.01.005.

[21]

R. Ilner, H. Lange and H. Teismann, Limitations on the control of schrödinger equations, ESAIM:COCV, 12 (2006), 615-635. doi: 10.1051/cocv:2006014.

[22]

A. Y. Khapalov, Bilinear controllability properties of a vibrating string with variable axial load and damping gain, Dyn. Contin. Impuls. Syst. Ser A Math Anal., 10 (2003), 721-743.

[23]

A. Y. Khapalov, Controllability properties of a vibrating string with variable axial load, Discrete Contin. Dyn. Syst., 11 (2004), 311-324. doi: 10.3934/dcds.2004.11.311.

[24]

A. Y. Khapalov, Reachability of nonnegative equilibrium states for the semilinear vibrating string by varying its axial load and the gain of damping, ESAIM:COCV, 12 (2006), 231-252. doi: 10.1051/cocv:2006001.

[25]

M. Mirrahimi, Lyapunov control of a quantum particle in a decaying potential, Ann. IHP: Nonlinear Analysis, 26 (2009), 1743-1765. doi: 10.1016/j.anihpc.2008.09.006.

[26]

V. Nersesyan, Growth of Sobolev norms and controllability of Schrödinger equation, Comm. Math. Phys., 290 (2009), 371-387. doi: 10.1007/s00220-009-0842-0.

[27]

V. Nersesyan, Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications, Ann. IHP Nonlinear Analysis, 27 (2010), 901-915. doi: 10.1016/j.anihpc.2010.01.004.

[28]

V. Nersesyan and H. Nersisyan, Global exact controllability in infinite time of Schrödinger equation, J. Math. Pures et Appl., 97 (2012), 295-317. doi: 10.1016/j.matpur.2011.11.005.

[29]

V. Nersesyan and H. Nersisyan, Global exact controllability in infinite time of Schrödinger equation: multidimensional case, (preprint).

[30]

G. Turinici, On the controllability of bilinear quantum systems, In C. Le Bris and M. Defranceschi, editors, Mathematical Models and Methods for Ab Initio Quantum Chemistry, 75-92, Lecture Notes in Chem., 74, Springer, Berlin, 2000. doi: 10.1007/978-3-642-57237-1_4.

show all references

References:
[1]

R. Adami and U. Boscain, Controllability of the Schroedinger Equation via Intersection of Eigenvalues, Proceedings of the 44rd IEEE Conference on Decision and Control December 12-15, 2005, Seville, (Spain). Also on 'Control Systems: Theory, Numerics and Applications, Roma, Italia 30 Mar - 1 Apr 2005, POS, Proceeding of science.

[2]

J. Ball, J. Marsden and M. Slemrod, Controllability for distributed bilinear systems, SIAM J. Control and Optim., 20 (1982), 575-597. doi: 10.1137/0320042.

[3]

L. Baudouin, A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical nuclear dynamics, Port. Math. (N.S.), 63 (2006), 293-325.

[4]

L. Baudouin, O. Kavian and J.-P. Puel, Regularity for a Schrödinger equation with singular potential and application to bilinear optimal control, J. of Differential Equations, 216 (2005), 188-222. doi: 10.1016/j.jde.2005.04.006.

[5]

L. Baudouin and J. Salomon, Constructive solutions of a bilinear control problem for a Schrödinger equation, Systems and Control Letters, 57 (2008), 453-464. doi: 10.1016/j.sysconle.2007.11.002.

[6]

K. Beauchard, Local Controllability of a 1-D Schrödinger equation, J. Math. Pures et Appl., 84 (2005), 851-956. doi: 10.1016/j.matpur.2005.02.005.

[7]

K. Beauchard, Controllability of a quantum particle in a 1D variable domain, ESAIM:COCV, 14 (2008), 105-147. doi: 10.1051/cocv:2007047.

[8]

K. Beauchard, Local controllability and non controllability for a 1D wave equation with bilinear control, J. Diff. Eq., 250 (2010), 2064-2098. doi: 10.1016/j.jde.2010.10.008.

[9]

K. Beauchard and J.-M. Coron, Controllability of a quantum particle in a moving potential well, J. Functional Analysis, 232 (2006), 328-389. doi: 10.1016/j.jfa.2005.03.021.

[10]

K. Beauchard and C. Laurent, Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control, J. Math. Pures Appl., 94 (2010), 520-554. doi: 10.1016/j.matpur.2010.04.001.

[11]

K. Beauchard and M. Mirrahimi, Practical stabilization of a quantum particle in a one-dimensional infinite square potential well, SIAM J. Contr. Optim., 48 (2009), 1179-1205. doi: 10.1137/070704204.

[12]

J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer Series in Operations Research, Springer-Verlag, New York, 2000.

[13]

U. Boscain, M. Caponigro, T. Chambrion and M. Sigalotti, A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule, Communications on Mathematical Physics, 311 (2012), 423-455. doi: 10.1007/s00220-012-1441-z.

[14]

N. Boussaïd, M. Caponigro and T. Chambrion, Weakly-coupled systems in quantum control, IEEE Transactions on Automatic Control, 58 (2013), 2205-2216. arXiv:1109.1900. doi: 10.1109/TAC.2013.2255948.

[15]

E. Cancès, C. L. Bris and M. Pilot, Contrôle optimal bilinéaire d'une équation de Schrödinger, CRAS Paris, 330 (2000), 567-571. doi: 10.1016/S0764-4442(00)00227-5.

[16]

E. Cerpa and E. Crépeau, Boundary controlability for the non linear korteweg-de vries equation on any critical domain, Ann. IHP Analyse Non Linéaire, 26 (2009), 457-475. doi: 10.1016/j.anihpc.2007.11.003.

[17]

T. Chambrion, P. Mason, M. Sigalotti and M. Boscain, Controllability of the discrete-spectrum Schrödinger equation driven by an external field, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 329-349. doi: 10.1016/j.anihpc.2008.05.001.

[18]

J.-M. Coron, On the small-time local controllability of a quantum particule in a moving one-dimensional infinite square potential well, C. R. Acad. Sciences Paris, Ser. I, 342 (2006), 103-108. doi: 10.1016/j.crma.2005.11.004.

[19]

J.-M. Coron, Control and Nonlinearity, vol. 136, Mathematical Surveys and Monographs, 2007.

[20]

S. Ervedoza and J.-P. Puel, Approximate controllability for a system of schrödinger equations modeling a single trapped ion, Ann.IHP: Nonlinear Analysis, 26 (2009), 2111-2136. doi: 10.1016/j.anihpc.2009.01.005.

[21]

R. Ilner, H. Lange and H. Teismann, Limitations on the control of schrödinger equations, ESAIM:COCV, 12 (2006), 615-635. doi: 10.1051/cocv:2006014.

[22]

A. Y. Khapalov, Bilinear controllability properties of a vibrating string with variable axial load and damping gain, Dyn. Contin. Impuls. Syst. Ser A Math Anal., 10 (2003), 721-743.

[23]

A. Y. Khapalov, Controllability properties of a vibrating string with variable axial load, Discrete Contin. Dyn. Syst., 11 (2004), 311-324. doi: 10.3934/dcds.2004.11.311.

[24]

A. Y. Khapalov, Reachability of nonnegative equilibrium states for the semilinear vibrating string by varying its axial load and the gain of damping, ESAIM:COCV, 12 (2006), 231-252. doi: 10.1051/cocv:2006001.

[25]

M. Mirrahimi, Lyapunov control of a quantum particle in a decaying potential, Ann. IHP: Nonlinear Analysis, 26 (2009), 1743-1765. doi: 10.1016/j.anihpc.2008.09.006.

[26]

V. Nersesyan, Growth of Sobolev norms and controllability of Schrödinger equation, Comm. Math. Phys., 290 (2009), 371-387. doi: 10.1007/s00220-009-0842-0.

[27]

V. Nersesyan, Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications, Ann. IHP Nonlinear Analysis, 27 (2010), 901-915. doi: 10.1016/j.anihpc.2010.01.004.

[28]

V. Nersesyan and H. Nersisyan, Global exact controllability in infinite time of Schrödinger equation, J. Math. Pures et Appl., 97 (2012), 295-317. doi: 10.1016/j.matpur.2011.11.005.

[29]

V. Nersesyan and H. Nersisyan, Global exact controllability in infinite time of Schrödinger equation: multidimensional case, (preprint).

[30]

G. Turinici, On the controllability of bilinear quantum systems, In C. Le Bris and M. Defranceschi, editors, Mathematical Models and Methods for Ab Initio Quantum Chemistry, 75-92, Lecture Notes in Chem., 74, Springer, Berlin, 2000. doi: 10.1007/978-3-642-57237-1_4.

[1]

Mégane Bournissou. Local controllability of the bilinear 1D Schrödinger equation with simultaneous estimates. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022027

[2]

Piermarco Cannarsa, Alessandro Duca, Cristina Urbani. Exact controllability to eigensolutions of the bilinear heat equation on compact networks. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1377-1401. doi: 10.3934/dcdss.2022011

[3]

Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143

[4]

Jibin Li, Yan Zhou. Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3083-3097. doi: 10.3934/dcdss.2020113

[5]

Felipe Hernandez. A decomposition for the Schrödinger equation with applications to bilinear and multilinear estimates. Communications on Pure and Applied Analysis, 2018, 17 (2) : 627-646. doi: 10.3934/cpaa.2018034

[6]

Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control and Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161

[7]

Patrick Martinez, Judith Vancostenoble. Exact controllability in "arbitrarily short time" of the semilinear wave equation. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 901-924. doi: 10.3934/dcds.2003.9.901

[8]

Van Duong Dinh, Binhua Feng. On fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4565-4612. doi: 10.3934/dcds.2019188

[9]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[10]

Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations and Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016

[11]

Shuya Kanagawa, Ben T. Nohara. The nonlinear Schrödinger equation created by the vibrations of an elastic plate and its dimensional expansion. Conference Publications, 2013, 2013 (special) : 415-426. doi: 10.3934/proc.2013.2013.415

[12]

Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 1-16. doi: 10.3934/dcdsb.2006.6.1

[13]

Manuel González-Burgos, Sergio Guerrero, Jean Pierre Puel. Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation. Communications on Pure and Applied Analysis, 2009, 8 (1) : 311-333. doi: 10.3934/cpaa.2009.8.311

[14]

Klaus-Jochen Engel, Marjeta Kramar FijavŽ. Exact and positive controllability of boundary control systems. Networks and Heterogeneous Media, 2017, 12 (2) : 319-337. doi: 10.3934/nhm.2017014

[15]

Lydia Ouaili. Minimal time of null controllability of two parabolic equations. Mathematical Control and Related Fields, 2020, 10 (1) : 89-112. doi: 10.3934/mcrf.2019031

[16]

Dan-Andrei Geba, Evan Witz. Revisited bilinear Schrödinger estimates with applications to generalized Boussinesq equations. Electronic Research Archive, 2020, 28 (2) : 627-649. doi: 10.3934/era.2020033

[17]

Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085

[18]

J. Cuevas, J. C. Eilbeck, N. I. Karachalios. Thresholds for breather solutions of the discrete nonlinear Schrödinger equation with saturable and power nonlinearity. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 445-475. doi: 10.3934/dcds.2008.21.445

[19]

José R. Quintero, Alex M. Montes. On the exact controllability and the stabilization for the Benney-Luke equation. Mathematical Control and Related Fields, 2020, 10 (2) : 275-304. doi: 10.3934/mcrf.2019039

[20]

Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations and Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020

2021 Impact Factor: 1.141

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]