\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Local controllability of 1D Schrödinger equations with bilinear control and minimal time

Abstract Related Papers Cited by
  • We consider a linear Schrödinger equation, on a bounded interval, with bilinear control.
        In [10], Beauchard and Laurent prove that, under an appropriate non degeneracy assumption, this system is controllable, locally around the ground state, in arbitrary time. In [18], Coron proves that a positive minimal time is required for this controllability result, on a particular degenerate example.
        In this article, we propose a general context for the local controllability to hold in large time, but not in small time. The existence of a positive minimal time is closely related to the behaviour of the second order term, in the power series expansion of the solution.
    Mathematics Subject Classification: 93B05, 93C20, 81Q93.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Adami and U. Boscain, Controllability of the Schroedinger Equation via Intersection of Eigenvalues, Proceedings of the 44rd IEEE Conference on Decision and Control December 12-15, 2005, Seville, (Spain). Also on 'Control Systems: Theory, Numerics and Applications, Roma, Italia 30 Mar - 1 Apr 2005, POS, Proceeding of science.

    [2]

    J. Ball, J. Marsden and M. Slemrod, Controllability for distributed bilinear systems, SIAM J. Control and Optim., 20 (1982), 575-597.doi: 10.1137/0320042.

    [3]

    L. Baudouin, A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical nuclear dynamics, Port. Math. (N.S.), 63 (2006), 293-325.

    [4]

    L. Baudouin, O. Kavian and J.-P. Puel, Regularity for a Schrödinger equation with singular potential and application to bilinear optimal control, J. of Differential Equations, 216 (2005), 188-222.doi: 10.1016/j.jde.2005.04.006.

    [5]

    L. Baudouin and J. Salomon, Constructive solutions of a bilinear control problem for a Schrödinger equation, Systems and Control Letters, 57 (2008), 453-464.doi: 10.1016/j.sysconle.2007.11.002.

    [6]

    K. Beauchard, Local Controllability of a 1-D Schrödinger equation, J. Math. Pures et Appl., 84 (2005), 851-956.doi: 10.1016/j.matpur.2005.02.005.

    [7]

    K. Beauchard, Controllability of a quantum particle in a 1D variable domain, ESAIM:COCV, 14 (2008), 105-147.doi: 10.1051/cocv:2007047.

    [8]

    K. Beauchard, Local controllability and non controllability for a 1D wave equation with bilinear control, J. Diff. Eq., 250 (2010), 2064-2098.doi: 10.1016/j.jde.2010.10.008.

    [9]

    K. Beauchard and J.-M. Coron, Controllability of a quantum particle in a moving potential well, J. Functional Analysis, 232 (2006), 328-389.doi: 10.1016/j.jfa.2005.03.021.

    [10]

    K. Beauchard and C. Laurent, Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control, J. Math. Pures Appl., 94 (2010), 520-554.doi: 10.1016/j.matpur.2010.04.001.

    [11]

    K. Beauchard and M. Mirrahimi, Practical stabilization of a quantum particle in a one-dimensional infinite square potential well, SIAM J. Contr. Optim., 48 (2009), 1179-1205.doi: 10.1137/070704204.

    [12]

    J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer Series in Operations Research, Springer-Verlag, New York, 2000.

    [13]

    U. Boscain, M. Caponigro, T. Chambrion and M. Sigalotti, A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule, Communications on Mathematical Physics, 311 (2012), 423-455.doi: 10.1007/s00220-012-1441-z.

    [14]

    N. Boussaïd, M. Caponigro and T. Chambrion, Weakly-coupled systems in quantum control, IEEE Transactions on Automatic Control, 58 (2013), 2205-2216. arXiv:1109.1900.doi: 10.1109/TAC.2013.2255948.

    [15]

    E. Cancès, C. L. Bris and M. Pilot, Contrôle optimal bilinéaire d'une équation de Schrödinger, CRAS Paris, 330 (2000), 567-571.doi: 10.1016/S0764-4442(00)00227-5.

    [16]

    E. Cerpa and E. Crépeau, Boundary controlability for the non linear korteweg-de vries equation on any critical domain, Ann. IHP Analyse Non Linéaire, 26 (2009), 457-475.doi: 10.1016/j.anihpc.2007.11.003.

    [17]

    T. Chambrion, P. Mason, M. Sigalotti and M. Boscain, Controllability of the discrete-spectrum Schrödinger equation driven by an external field, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 329-349.doi: 10.1016/j.anihpc.2008.05.001.

    [18]

    J.-M. Coron, On the small-time local controllability of a quantum particule in a moving one-dimensional infinite square potential well, C. R. Acad. Sciences Paris, Ser. I, 342 (2006), 103-108.doi: 10.1016/j.crma.2005.11.004.

    [19]

    J.-M. Coron, Control and Nonlinearity, vol. 136, Mathematical Surveys and Monographs, 2007.

    [20]

    S. Ervedoza and J.-P. Puel, Approximate controllability for a system of schrödinger equations modeling a single trapped ion, Ann.IHP: Nonlinear Analysis, 26 (2009), 2111-2136.doi: 10.1016/j.anihpc.2009.01.005.

    [21]

    R. Ilner, H. Lange and H. Teismann, Limitations on the control of schrödinger equations, ESAIM:COCV, 12 (2006), 615-635.doi: 10.1051/cocv:2006014.

    [22]

    A. Y. Khapalov, Bilinear controllability properties of a vibrating string with variable axial load and damping gain, Dyn. Contin. Impuls. Syst. Ser A Math Anal., 10 (2003), 721-743.

    [23]

    A. Y. Khapalov, Controllability properties of a vibrating string with variable axial load, Discrete Contin. Dyn. Syst., 11 (2004), 311-324.doi: 10.3934/dcds.2004.11.311.

    [24]

    A. Y. Khapalov, Reachability of nonnegative equilibrium states for the semilinear vibrating string by varying its axial load and the gain of damping, ESAIM:COCV, 12 (2006), 231-252.doi: 10.1051/cocv:2006001.

    [25]

    M. Mirrahimi, Lyapunov control of a quantum particle in a decaying potential, Ann. IHP: Nonlinear Analysis, 26 (2009), 1743-1765.doi: 10.1016/j.anihpc.2008.09.006.

    [26]

    V. Nersesyan, Growth of Sobolev norms and controllability of Schrödinger equation, Comm. Math. Phys., 290 (2009), 371-387.doi: 10.1007/s00220-009-0842-0.

    [27]

    V. Nersesyan, Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications, Ann. IHP Nonlinear Analysis, 27 (2010), 901-915.doi: 10.1016/j.anihpc.2010.01.004.

    [28]

    V. Nersesyan and H. Nersisyan, Global exact controllability in infinite time of Schrödinger equation, J. Math. Pures et Appl., 97 (2012), 295-317.doi: 10.1016/j.matpur.2011.11.005.

    [29]

    V. Nersesyan and H. Nersisyan, Global exact controllability in infinite time of Schrödinger equation: multidimensional case, (preprint).

    [30]

    G. Turinici, On the controllability of bilinear quantum systems, In C. Le Bris and M. Defranceschi, editors, Mathematical Models and Methods for Ab Initio Quantum Chemistry, 75-92, Lecture Notes in Chem., 74, Springer, Berlin, 2000.doi: 10.1007/978-3-642-57237-1_4.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(78) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return