Citation: |
[1] |
S. Alinhac and P. Gérard, Pseudo-Differential Operators and the Nash-Moser Theorem, volume 82 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2007. Translated from the 1991 French original by Stephen S. Wilson. |
[2] |
N. Anantharaman and F. Macía, Semiclassical measures for the Schrödinger equation on the torus, To appear in the Journal of the European Mathematical Society.. |
[3] |
N. Anantharaman and F. Macià, The dynamics of the Schrödinger flow from the point of view of semiclassical measures, In Spectral geometry, volume 84 of Proc. Sympos. Pure Math., pages 93-116. Amer. Math. Soc., 2012.doi: 10.1090/pspum/084/1351. |
[4] |
N. Anantharaman and G. Rivière, Dispersion and controllability for the Schrödinger equation on negatively curved manifolds, Anal. PDE, 5 (2012), 313-338.doi: 10.2140/apde.2012.5.313. |
[5] |
C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.doi: 10.1137/0330055. |
[6] |
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part I, Geom. Funct. Anal., 3 (1993), 107-156.doi: 10.1007/BF01896020. |
[7] |
N. Burq, Contrôle de l'équation des plaques en présence d'obstacles strictement convexes, Mém. Soc. Math. France (N.S.). |
[8] |
N. Burq and P. Gérard, Condition nécéssaire et suffisante pour la contrôlabilite exacte des ondes, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 749-752.doi: 10.1016/S0764-4442(97)80053-5. |
[9] |
N. Burq and M. Zworski, Control theory and high energy eigenfunctions, In Journées "Équations aux Dérivées Partielles'', pages Exp. No. XIII, 10. École Polytech., Palaiseau, 2004. |
[10] |
N. Burq and M. Zworski, Geometric control in the presence of a black box, J. of American Math. Soc, 17 (2004), 443-471.doi: 10.1090/S0894-0347-04-00452-7. |
[11] |
T. Cazenave, Semilinear Schrödinger Equations, volume 10 of Courant Lecture Notes in Mathematics, 2003. |
[12] |
H. Christianson, Semiclassical non-concentration near hyperbolic orbits (and erratum), J. Funct. Anal., 246 (2007), 145-195.doi: 10.1016/j.jfa.2006.09.012. |
[13] |
Y. Colin de Verdière and B. Parisse, Équilibre instable en régime semi-classique. I. Concentration microlocale, Comm. Partial Differential Equations, 19 (1994), 1535-1563.doi: 10.1080/03605309408821063. |
[14] |
J.-M. Coron, Control and Nonlinearity, Amer Mathematical Society, 2007. |
[15] |
B. Dehman, P. Gérard and G. Lebeau, Stabilization and control for the nonlinear Schrödinger equation on a compact surface, Math. Z., 254 (2006), 729-749.doi: 10.1007/s00209-006-0005-3. |
[16] |
B. Dehman and G. Lebeau, Analysis of the HUM Control Operator and Exact Controllability for Semilinear Waves in Uniform Time, SIAM J. Control Optim., 48 (2009), 521-550.doi: 10.1137/070712067. |
[17] |
B. Dehman, G. Lebeau and E. Zuazua, Stabilization and control for the subcritical semilinear wave equation, Ann. Sci. École Norm. Sup., 36 (2003), 525-551.doi: 10.1016/S0012-9593(03)00021-1. |
[18] |
T. Duyckaerts and L. Miller, Resolvent conditions for the control of parabolic equations, J. Funct. Anal., 263 (2012), 3641-3673.doi: 10.1016/j.jfa.2012.09.003. |
[19] |
S. Ervedoza, C. Zheng and E. Zuazua, On the observability of time-discrete conservative linear systems, J. Funct. Anal., 254 (2008), 3037-3078.doi: 10.1016/j.jfa.2008.03.005. |
[20] |
S. Ervedoza and E. Zuazua, A systematic method for building smooth controls for smooth data, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1375-1401.doi: 10.3934/dcdsb.2010.14.1375. |
[21] |
E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 583-616.doi: 10.1016/S0294-1449(00)00117-7. |
[22] |
S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, Springer, 2004.doi: 10.1007/978-3-642-18855-8. |
[23] |
P. Gérard, Microlocal Defect Measures, Comm. Partial Diff. eq., 16 (1991), 1761-1794.doi: 10.1080/03605309108820822. |
[24] |
A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire, J. Math. Pures Appl., 68 (1989), 457-465. |
[25] |
L. Hörmander, The Analysis of Linear Partial Differential Operators : Pseudo-differential Operators, volume 3. Springer Verlag, 1985. |
[26] |
V. Isakov, Carleman type estimates in an anisotropic case and applications, J. Differential Equations, 105 (1993), 217-238.doi: 10.1006/jdeq.1993.1088. |
[27] |
K. Ito, K. Ramdani and M. Tucsnak, A time reversal based algorithm for solving initial data inverse problems, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 641-652.doi: 10.3934/dcdss.2011.4.641. |
[28] |
S. Jaffard, Contrôle interne exacte des vibrations d'une plaque rectangulaire, Portugal. Math., 47 (1990), 423-429. |
[29] |
R. Joly and C. Laurent, Stabilisation for the semilinear wave equation with geometric control condition, Anal. PDE, 6 (2013), 1089-1119.doi: 10.2140/apde.2013.6.1089. |
[30] |
V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer, 2005. |
[31] |
J. Lagnese, Control of wave processes with distributed controls supported on a subregion, SIAM J. Control Optim., 21 (1983), 68-85.doi: 10.1137/0321004. |
[32] |
I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform stabilization of schrödinger equations with dirichlet control, Differential Integral Equations, 5 (1992), 521-535. |
[33] |
I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. Part I: $H^1(\Omega)$-estimates, J. Inverse Ill-Posed Probl., 12 (2004), 43-123.doi: 10.1163/156939404773972761. |
[34] |
C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on an interval, ESAIM Control Optim. Calc. Var., 16 (2010), 356-379.doi: 10.1051/cocv/2009001. |
[35] |
C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on some compact manifolds of dimension 3, SIAM J. Math. Anal., 42 (2010), 785-832.doi: 10.1137/090749086. |
[36] |
G. Lebeau, Contrôle de l'équation de Schrödinger, J. Math. Pures Appl., 71 (1992), 267-291. |
[37] |
G. Lebeau, Control for hyperbolic equations, In Analysis and optimization of systems: state and frequency domain approaches for infinite-dimensional systems (Sophia-Antipolis, 1992), volume 185 of Lecture Notes in Control and Inform. Sci., pages 160-183. Springer, Berlin, 1993.doi: 10.1007/BFb0115024. |
[38] |
J.-L. Lions, Contrôlabilité Exacte, Stabilization et Perturbations de Systèmes Distribuées, Tom 2, Masson, RMA, 1988. |
[39] |
E. Machtyngier, Exact controllability for the Schrödinger equation, SIAM J. Control Optim., 32 (1994), 24-34.doi: 10.1137/S0363012991223145. |
[40] |
F. Maciá, High-frequency propagation for the Schrödinger equation on the torus, J. Funct. Anal., 258 (2010), 933-955.doi: 10.1016/j.jfa.2009.09.020. |
[41] |
A. Mercado, A. Osses and L. Rosier, Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights, Inverse Problems, 24 (2008), 015017.doi: 10.1088/0266-5611/24/1/015017. |
[42] |
L. Miller, Escape function conditions for the observation, control, and stabilization of the wave equation, SIAM J. Control Optim., 41 (2002), 1554-1566.doi: 10.1137/S036301290139107X. |
[43] |
L. Miller, How violent are fast controls for Schrödinger and plate vibrations? Arch. Ration. Mech. Anal., 172 (2004), 429-456.doi: 10.1007/s00205-004-0312-y. |
[44] |
L. Miller, Controllability cost of conservative systems: Resolvent condition and transmutation, J. Funct. Anal., 218 (2005), 425-444.doi: 10.1016/j.jfa.2004.02.001. |
[45] |
L. Miller, Resolvent conditions for the control of unitary groups and their approximations, J. Spectr. Theory, 2 (2012), 1-55.doi: 10.4171/JST/20. |
[46] |
S. Nonnenmacher and M. Zworski, Quantum decay rates in chaotic scattering, Acta Math., 203 (2009), 149-233.doi: 10.1007/s11511-009-0041-z. |
[47] |
K.-D. Phung, Observability and control of Schrödinger equations, SIAM J. Control Optim., 40 (2001), 211-230.doi: 10.1137/S0363012900368405. |
[48] |
J. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math., 22 (1969), 807-823.doi: 10.1002/cpa.3160220605. |
[49] |
J. Ralston, Approximate eigenfunctions of the Laplacian, J. Differential Geometry, 12 (1977), 87-100. |
[50] |
K. Ramdani, T. Takahashi, G. Tenenbaum and M. Tucsnak, A spectral approach for the exact observability of infinite-dimensional systems with skew-adjoint generator, J. Funct. Anal., 226 (2005), 193-229.doi: 10.1016/j.jfa.2005.02.009. |
[51] |
J. Rauch and M. Taylor, Exponential Decay of Solutions to Hyperbolic Equations in Bounded Domains, Indiana Univ. Math. J., 24 (1974), 79-86.doi: 10.1512/iumj.1975.24.24004. |
[52] |
L. Robbiano and C. Zuily, Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients, Invent. Math., 131 (1998), 493-539.doi: 10.1007/s002220050212. |
[53] |
L. Rosier and B.-Y. Zhang, Exact boundary controllability of the nonlinear Schrödinger equation, J. Differential Equations, 246 (2009), 4129-4153.doi: 10.1016/j.jde.2008.11.004. |
[54] |
L. Rosier and B.-Y. Zhang, Exact controllability and stabilizability of the nonlinear schrödinger equation on a bounded interval, SIAM J. Control Optim., 48 (2009), 972-992.doi: 10.1137/070709578. |
[55] |
L. Rosier and B.-Y. Zhang, Control and Stabilization of the Nonlinear Schrödinger Equation on Rectangles, Math. Models Methods Appl. Sci., 20 (2010), 2293-2347.doi: 10.1142/S0218202510004933. |
[56] |
T. Tao, Nonlinear Dispersive Equations, Local and global Analysis, Amer Mathematical Society, 2006. |
[57] |
L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 115 (1990), 193-230.doi: 10.1017/S0308210500020606. |
[58] |
G. Tenenbaum and M. Tucsnak, Fast and strongly localized observation for the Schrödinger equation, Trans. Amer. Math. Soc., 361 (2009), 951-977.doi: 10.1090/S0002-9947-08-04584-4. |
[59] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel, 2009.doi: 10.1007/978-3-7643-8994-9. |
[60] |
E. Trélat, Y. Privat and E. Zuazua, Optimal observability of wave and Schrödinger equations in ergodic domains, submitted. |
[61] |
Q. Zhou and M. Yamamoto, Hautus condition on the exact controllability of conservative systems, Internat. J. Control, 67 (1997), 371-379. |
[62] |
E. Zuazua, Contrôlabilité exacte en temps arbitrairement petit de quelques modèles de plaques, volume Appendix A.1 to [38]. |
[63] |
E. Zuazua, Exact controllability for the semilinear wave equation, J. Math. Pures Appl., 69 (1990), 33-55. |
[64] |
E. Zuazua, Remarks on the controllability of the schrödinger equation, In Quantum control: Mathematical and numerical challenges, volume 33 of CRM Proc. Lecture Notes, pages 193-211. Amer. Math. Soc., 2003. |
[65] |
C. Zuily, Uniqueness and Nonuniqueness in the Cauchy Problem, volume 33 of Progress in Mathematics, Birkhäuser Boston Inc., 1983. |