June  2014, 4(2): 187-202. doi: 10.3934/mcrf.2014.4.187

Optimal insurance in a changing economy

1. 

School of Insurance, Central University Of Finance and Economics, Beijing 100081

2. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

3. 

Cass Business School, City University London, London, EC1Y 8TZ, United Kingdom

4. 

Department of Mathematics, University of Hong Kong, Pokfulam Road, Hong Kong, China

Received  March 2012 Revised  April 2013 Published  February 2014

We discuss a general problem of optimal strategies for insurance, consumption and investment in a changing economic environment described by a continuous-time regime switching model. We consider the situation of a random investment horizon which depends on the force of mortality of an economic agent. The objective of the agent is to maximize the expected discounted utility of consumption and terminal wealth over a random future lifetime. A verification theorem for the Hamilton-Jacobi-Bellman (HJB) solution related to the optimal consumption, investment and insurance is provided. In the cases of a power utility and an exponential utility, we derive analytical solutions to the optimal strategies. Numerical results are given to illustrate the proposed model and to document the impact of switching regimes on the optimal strategies.
Citation: Jingzhen Liu, Ka-Fai Cedric Yiu, Tak Kuen Siu, Wai-Ki Ching. Optimal insurance in a changing economy. Mathematical Control & Related Fields, 2014, 4 (2) : 187-202. doi: 10.3934/mcrf.2014.4.187
References:
[1]

N. U. Ahmed and K. L. Teo, Optimal Control of Distributed Parameter Systems,, North Holland, (1981).   Google Scholar

[2]

K. J. Arrow, Uncertainty and the welfare economics of medical care,, American Economic Review, 53 (1963), 941.   Google Scholar

[3]

C. Blanchet-Scalliet, N. E. Karoui, M. Jeanblanc and L. Martellini, Optimal investment and consumption decisions when time-horizon is uncertain,, Journal of Mathematical Economics, 44 (2008), 1100.  doi: 10.1016/j.jmateco.2007.09.004.  Google Scholar

[4]

B. Bouchard and H. Pham, Wealth-path dependent utility maximization in incomplete markets,, Finance Stochast, 8 (2004), 579.  doi: 10.1007/s00780-004-0125-8.  Google Scholar

[5]

E. Briys, Insurance and consumption: The continuous-time case,, Journal of Risk and Insurance, 53 (1986), 718.  doi: 10.2307/252972.  Google Scholar

[6]

J. Buffington and R. J. Elliott, Regime switching and European options,, Stochastic Theory and Control, (2002), 73.  doi: 10.1007/3-540-48022-6_5.  Google Scholar

[7]

J. Buffington and R. J. Elliott, American options with regime switching,, International Journal of Theoretical and Applied Finance, 5 (2002), 497.  doi: 10.1142/S0219024902001523.  Google Scholar

[8]

L. Delong, Optimal investment and consumption in the presence of default on a financial market driven by a Levy noise,, Ann. Univ. Mariae Curie-Sk?odowska Sect. A, 60 (2006), 1.   Google Scholar

[9]

R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models: Imation and Control,, Applications of Mathematics (New York), (1995).   Google Scholar

[10]

R. J. Elliott, L. L. Chan and T. K. Siu, Option pricing and Esscher transform under regime switching,, Annals of Finance, 1 (2005), 423.  doi: 10.1007/s10436-005-0013-z.  Google Scholar

[11]

R. J. Elliott and J. Hinz, Portfolio analysis, hidden Markov models and chart analysis by PF-Diagrams,, International Journal of Theoretical and Applied Finance, 5 (2002), 385.   Google Scholar

[12]

R. J. Elliott, T. K. Siu and L. L. Chan, Pricing volatility swaps under Heston's stochastic volatility model with regime switching,, Applied Mathematical Finance, 14 (2007), 41.  doi: 10.1080/13504860600659222.  Google Scholar

[13]

H. U. Gerber and E. W. Shiu, Investing for retirement: Optimal capital growth and dynamic asset allocation (with discussions),, North American Actuarial Journal, 4 (2000), 42.  doi: 10.1080/10920277.2000.10595899.  Google Scholar

[14]

S. M. Goldfeld and R. E. Quandt, The estimation of structural shifts by switching regressions,, Annals of Economic and Social Measurement, 2 (1973), 475.   Google Scholar

[15]

C. Gollier, Insurance and precautionary capital accumulation in a continuous-time model,, Journal of Risk and Insurance, 61 (1994), 78.  doi: 10.2307/253425.  Google Scholar

[16]

X. Guo, Information and option pricings,, Quantitative Finance, 1 (2001), 38.  doi: 10.1080/713665550.  Google Scholar

[17]

J. D. Hamilton, A new approach to the economic analysis of nonstationary time series and the business cycle,, Econometrica, 57 (1989), 357.  doi: 10.2307/1912559.  Google Scholar

[18]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case,, The Review of Economics and Statistics, 51 (1969), 247.  doi: 10.2307/1926560.  Google Scholar

[19]

R. C. Merton, Optimal consumption and portfolio rules in a continuous-time model,, Journal of Economic Theory, 3 (1971), 373.  doi: 10.1016/0022-0531(71)90038-X.  Google Scholar

[20]

J. Mossin, Aspects of rational insurance purchasing,, Journal of Political Economy, 76 (1968), 553.  doi: 10.1086/259427.  Google Scholar

[21]

K. S. Moore and V. R. Young, Optimal insurance in a continuous-time model,, Insurance Mathematics and Economics, 39 (2006), 47.  doi: 10.1016/j.insmatheco.2006.01.009.  Google Scholar

[22]

R. E. Quandt, The estimation of the parameters of a linear regression system obeying two separate regimes,, Journal of the American Statistical Association, 53 (1958), 873.  doi: 10.1080/01621459.1958.10501484.  Google Scholar

[23]

H. Schlesinger and C. Gollier, Second-best insurance contract design in an incomplete market,, Scandinavian Journal of Economics, 97 (1995), 123.   Google Scholar

[24]

K. L. Teo, D. W. Reid and I. E. Boyd, Stochastic optimal control theory and its computational method,, International Journal on Systems Science, 11 (1980), 77.  doi: 10.1080/00207728008966998.  Google Scholar

[25]

H. Tong, Some comments on the Canadian lynx data (with discussion),, Journal of the Royal Statistical Society, 140 (1977), 432.   Google Scholar

[26]

K. F. C. Yiu, J. Z. Liu, T. K. Siu and W. C. Ching, Optimal portfolios with regime-switching and value-at-risk constraint,, Automatica, 46 (2010), 1979.  doi: 10.1016/j.automatica.2010.02.027.  Google Scholar

show all references

References:
[1]

N. U. Ahmed and K. L. Teo, Optimal Control of Distributed Parameter Systems,, North Holland, (1981).   Google Scholar

[2]

K. J. Arrow, Uncertainty and the welfare economics of medical care,, American Economic Review, 53 (1963), 941.   Google Scholar

[3]

C. Blanchet-Scalliet, N. E. Karoui, M. Jeanblanc and L. Martellini, Optimal investment and consumption decisions when time-horizon is uncertain,, Journal of Mathematical Economics, 44 (2008), 1100.  doi: 10.1016/j.jmateco.2007.09.004.  Google Scholar

[4]

B. Bouchard and H. Pham, Wealth-path dependent utility maximization in incomplete markets,, Finance Stochast, 8 (2004), 579.  doi: 10.1007/s00780-004-0125-8.  Google Scholar

[5]

E. Briys, Insurance and consumption: The continuous-time case,, Journal of Risk and Insurance, 53 (1986), 718.  doi: 10.2307/252972.  Google Scholar

[6]

J. Buffington and R. J. Elliott, Regime switching and European options,, Stochastic Theory and Control, (2002), 73.  doi: 10.1007/3-540-48022-6_5.  Google Scholar

[7]

J. Buffington and R. J. Elliott, American options with regime switching,, International Journal of Theoretical and Applied Finance, 5 (2002), 497.  doi: 10.1142/S0219024902001523.  Google Scholar

[8]

L. Delong, Optimal investment and consumption in the presence of default on a financial market driven by a Levy noise,, Ann. Univ. Mariae Curie-Sk?odowska Sect. A, 60 (2006), 1.   Google Scholar

[9]

R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models: Imation and Control,, Applications of Mathematics (New York), (1995).   Google Scholar

[10]

R. J. Elliott, L. L. Chan and T. K. Siu, Option pricing and Esscher transform under regime switching,, Annals of Finance, 1 (2005), 423.  doi: 10.1007/s10436-005-0013-z.  Google Scholar

[11]

R. J. Elliott and J. Hinz, Portfolio analysis, hidden Markov models and chart analysis by PF-Diagrams,, International Journal of Theoretical and Applied Finance, 5 (2002), 385.   Google Scholar

[12]

R. J. Elliott, T. K. Siu and L. L. Chan, Pricing volatility swaps under Heston's stochastic volatility model with regime switching,, Applied Mathematical Finance, 14 (2007), 41.  doi: 10.1080/13504860600659222.  Google Scholar

[13]

H. U. Gerber and E. W. Shiu, Investing for retirement: Optimal capital growth and dynamic asset allocation (with discussions),, North American Actuarial Journal, 4 (2000), 42.  doi: 10.1080/10920277.2000.10595899.  Google Scholar

[14]

S. M. Goldfeld and R. E. Quandt, The estimation of structural shifts by switching regressions,, Annals of Economic and Social Measurement, 2 (1973), 475.   Google Scholar

[15]

C. Gollier, Insurance and precautionary capital accumulation in a continuous-time model,, Journal of Risk and Insurance, 61 (1994), 78.  doi: 10.2307/253425.  Google Scholar

[16]

X. Guo, Information and option pricings,, Quantitative Finance, 1 (2001), 38.  doi: 10.1080/713665550.  Google Scholar

[17]

J. D. Hamilton, A new approach to the economic analysis of nonstationary time series and the business cycle,, Econometrica, 57 (1989), 357.  doi: 10.2307/1912559.  Google Scholar

[18]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case,, The Review of Economics and Statistics, 51 (1969), 247.  doi: 10.2307/1926560.  Google Scholar

[19]

R. C. Merton, Optimal consumption and portfolio rules in a continuous-time model,, Journal of Economic Theory, 3 (1971), 373.  doi: 10.1016/0022-0531(71)90038-X.  Google Scholar

[20]

J. Mossin, Aspects of rational insurance purchasing,, Journal of Political Economy, 76 (1968), 553.  doi: 10.1086/259427.  Google Scholar

[21]

K. S. Moore and V. R. Young, Optimal insurance in a continuous-time model,, Insurance Mathematics and Economics, 39 (2006), 47.  doi: 10.1016/j.insmatheco.2006.01.009.  Google Scholar

[22]

R. E. Quandt, The estimation of the parameters of a linear regression system obeying two separate regimes,, Journal of the American Statistical Association, 53 (1958), 873.  doi: 10.1080/01621459.1958.10501484.  Google Scholar

[23]

H. Schlesinger and C. Gollier, Second-best insurance contract design in an incomplete market,, Scandinavian Journal of Economics, 97 (1995), 123.   Google Scholar

[24]

K. L. Teo, D. W. Reid and I. E. Boyd, Stochastic optimal control theory and its computational method,, International Journal on Systems Science, 11 (1980), 77.  doi: 10.1080/00207728008966998.  Google Scholar

[25]

H. Tong, Some comments on the Canadian lynx data (with discussion),, Journal of the Royal Statistical Society, 140 (1977), 432.   Google Scholar

[26]

K. F. C. Yiu, J. Z. Liu, T. K. Siu and W. C. Ching, Optimal portfolios with regime-switching and value-at-risk constraint,, Automatica, 46 (2010), 1979.  doi: 10.1016/j.automatica.2010.02.027.  Google Scholar

[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[3]

Yiling Chen, Baojun Bian. Optimal dividend policy in an insurance company with contagious arrivals of claims. Mathematical Control & Related Fields, 2021, 11 (1) : 1-22. doi: 10.3934/mcrf.2020024

[4]

Nan Zhang, Linyi Qian, Zhuo Jin, Wei Wang. Optimal stop-loss reinsurance with joint utility constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 841-868. doi: 10.3934/jimo.2020001

[5]

Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136

[6]

Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021013

[7]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[8]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[9]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[10]

Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021002

[11]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[12]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[13]

Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2021001

[14]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

[15]

Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134

[16]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[17]

Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177

[18]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[19]

Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021003

[20]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (0)

[Back to Top]