June  2014, 4(2): 261-261. doi: 10.3934/mcrf.2014.4.261

Errata: Controllability of the cubic Schroedinger equation via a low-dimensional source term

1. 

DiMaD, Università di Firenze, via delle Pandette 9, Firenze, 50127

Received  January 2014 Published  February 2014

N/A
Citation: Andrey Sarychev. Errata: Controllability of the cubic Schroedinger equation via a low-dimensional source term. Mathematical Control & Related Fields, 2014, 4 (2) : 261-261. doi: 10.3934/mcrf.2014.4.261
References:
[1]

A. V. Sarychev, Controllability of the cubic Schroedinger equation via a low-dimensional source term,, Mathematical Control and Related Fields, 2 (2012), 247.  doi: 10.3934/mcrf.2012.2.247.  Google Scholar

show all references

References:
[1]

A. V. Sarychev, Controllability of the cubic Schroedinger equation via a low-dimensional source term,, Mathematical Control and Related Fields, 2 (2012), 247.  doi: 10.3934/mcrf.2012.2.247.  Google Scholar

[1]

Andrey Sarychev. Controllability of the cubic Schroedinger equation via a low-dimensional source term. Mathematical Control & Related Fields, 2012, 2 (3) : 247-270. doi: 10.3934/mcrf.2012.2.247

[2]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[3]

Mickaël D. Chekroun, Michael Ghil, Honghu Liu, Shouhong Wang. Low-dimensional Galerkin approximations of nonlinear delay differential equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4133-4177. doi: 10.3934/dcds.2016.36.4133

[4]

Chui-Jie Wu. Large optimal truncated low-dimensional dynamical systems. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 559-583. doi: 10.3934/dcds.1996.2.559

[5]

Dmitrii Rachinskii. Realization of arbitrary hysteresis by a low-dimensional gradient flow. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 227-243. doi: 10.3934/dcdsb.2016.21.227

[6]

Chui-Jie Wu, Hongliang Zhao. Generalized HWD-POD method and coupling low-dimensional dynamical system of turbulence. Conference Publications, 2001, 2001 (Special) : 371-379. doi: 10.3934/proc.2001.2001.371

[7]

Jing Zhou, Zhibin Deng. A low-dimensional SDP relaxation based spatial branch and bound method for nonconvex quadratic programs. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2087-2102. doi: 10.3934/jimo.2019044

[8]

Jong-Shenq Guo, Bei Hu. Blowup rate estimates for the heat equation with a nonlinear gradient source term. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 927-937. doi: 10.3934/dcds.2008.20.927

[9]

Xuan Liu, Ting Zhang. $ H^2 $ blowup result for a Schrödinger equation with nonlinear source term. Electronic Research Archive, 2020, 28 (2) : 777-794. doi: 10.3934/era.2020039

[10]

Tae Gab Ha. On viscoelastic wave equation with nonlinear boundary damping and source term. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1543-1576. doi: 10.3934/cpaa.2010.9.1543

[11]

Thierry Cazenave, Yvan Martel, Lifeng Zhao. Finite-time blowup for a Schrödinger equation with nonlinear source term. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1171-1183. doi: 10.3934/dcds.2019050

[12]

Guirong Liu, Yuanwei Qi. Sign-changing solutions of a quasilinear heat equation with a source term. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1389-1414. doi: 10.3934/dcdsb.2013.18.1389

[13]

Chan Liu, Jin Wen, Zhidong Zhang. Reconstruction of the time-dependent source term in a stochastic fractional diffusion equation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020053

[14]

Umberto Biccari, Mahamadi Warma. Null-controllability properties of a fractional wave equation with a memory term. Evolution Equations & Control Theory, 2020, 9 (2) : 399-430. doi: 10.3934/eect.2020011

[15]

Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459

[16]

Daniele Bartolucci, Luigi Orsina. Errata. Communications on Pure & Applied Analysis, 2008, 7 (3) : 743-744. doi: 10.3934/cpaa.2008.7.743

[17]

Elias M. Guio, Ricardo Sa Earp. Errata. Communications on Pure & Applied Analysis, 2008, 7 (2) : 465-465. doi: 10.3934/cpaa.2008.7.465

[18]

Carlos E. Kenig, Tatiana Toro. Errata. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 857-859. doi: 10.3934/dcds.2006.14.857

[19]

Gongwei Liu. The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term. Electronic Research Archive, 2020, 28 (1) : 263-289. doi: 10.3934/era.2020016

[20]

Boris Andreianov, Nicolas Seguin. Analysis of a Burgers equation with singular resonant source term and convergence of well-balanced schemes. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1939-1964. doi: 10.3934/dcds.2012.32.1939

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]