Citation: |
[1] |
C. Bandle and H. Brunner, Blowup in diffusion equations: A survey, J. Comput. Appl. Math., 97 (1998), 3-22.doi: 10.1016/S0377-0427(98)00100-9. |
[2] |
C. Y. Chan, New results in quenching, in World Congress of Nonlinear Analysts '92, Vol. I-V (Tampa, FL, 1992), de Gruyter, Berlin, 1996, 427-434. |
[3] |
C. Y. Chan and H. G. Kaper, Quenching for semilinear singular parabolic problems, SIAM J. Math. Anal., 20 (1989), 558-566.doi: 10.1137/0520039. |
[4] |
M. Escobedo and M. A. Herrero, Boundedness and blow up for a semilinear reaction diffusion system, J. Differential Equations, 89 (1991), 176-202.doi: 10.1016/0022-0396(91)90118-S. |
[5] |
R. Glassey, Blow-up theorems for nonlinear wave-equations, Math. Z., 132 (1973), 183-203.doi: 10.1007/BF01213863. |
[6] |
J. S. Guo and B. Hu, The profile near quenching time for the solution of a singular semilinear heat equation, Proc. Edinburgh Math. Soc., 40 (1997), 437-456.doi: 10.1017/S0013091500023932. |
[7] |
H. Kawarada, On solutions of initial-boundary problem for $u_t=u_{x x}+1/(1-u)$, Publ. Res. Inst. Math. Sci., 10 (1975), 729-736.doi: 10.2977/prims/1195191889. |
[8] |
P. Lin, Quenching time optimal control for some ordinary differential equations, preprint, arXiv:1209.0784v1. |
[9] |
P. Lin and G. Wang, Blowup time optimal control for ordinary differential equations, SIAM J. Control Optim., 49 (2011), 73-105.doi: 10.1137/090764232. |
[10] |
J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972. |
[11] |
B. Yordanov and Q. S. Zhang, Finite-time blowup for wave equations with a potential, SIAM J. Math. Anal., 36 (2005), 1426-1433.doi: 10.1137/S0036141004440198. |
[12] |
Z. Zhang and B. Hu, Rate estimates of gradient blowup for a heat equation with exponential nonlinearity, Nonlinear Anal., 72 (2010), 4594-4601.doi: 10.1016/j.na.2010.02.036. |