September  2014, 4(3): 289-314. doi: 10.3934/mcrf.2014.4.289

Time optimal control problems for some non-smooth systems

1. 

School of Mathematical Sciences and LMNS, Fudan University, Shanghai 200433

2. 

School of Mathematical Sciences, Fudan University, Shanghai 200433, China

3. 

School of Mathematical Sciences, Fudan University, KLMNS, Shanghai, 200433

Received  September 2013 Revised  November 2013 Published  April 2014

Time optimal control problems for some non-smooth systems in general form are considered. The non-smoothness is caused by singularity. It is proved that Pontryagin's maximum principle holds for at least one optimal relaxed control. Thus, Pontryagin's maximum principle holds when the optimal classical control is a unique optimal relaxed control. By constructing an auxiliary controlled system which admits the original optimal classical control as its unique optimal relaxed control, one get a chance to get Pontryagin's maximum principle for the original optimal classical control. Existence results are also considered.
Citation: Hongwei Lou, Junjie Wen, Yashan Xu. Time optimal control problems for some non-smooth systems. Mathematical Control & Related Fields, 2014, 4 (3) : 289-314. doi: 10.3934/mcrf.2014.4.289
References:
[1]

C. Bandle and H. Brunner, Blowup in diffusion equations: A survey,, J. Comput. Appl. Math., 97 (1998), 3.  doi: 10.1016/S0377-0427(98)00100-9.  Google Scholar

[2]

C. Y. Chan, New results in quenching,, in World Congress of Nonlinear Analysts '92, (1992), 427.   Google Scholar

[3]

C. Y. Chan and H. G. Kaper, Quenching for semilinear singular parabolic problems,, SIAM J. Math. Anal., 20 (1989), 558.  doi: 10.1137/0520039.  Google Scholar

[4]

M. Escobedo and M. A. Herrero, Boundedness and blow up for a semilinear reaction diffusion system,, J. Differential Equations, 89 (1991), 176.  doi: 10.1016/0022-0396(91)90118-S.  Google Scholar

[5]

R. Glassey, Blow-up theorems for nonlinear wave-equations,, Math. Z., 132 (1973), 183.  doi: 10.1007/BF01213863.  Google Scholar

[6]

J. S. Guo and B. Hu, The profile near quenching time for the solution of a singular semilinear heat equation,, Proc. Edinburgh Math. Soc., 40 (1997), 437.  doi: 10.1017/S0013091500023932.  Google Scholar

[7]

H. Kawarada, On solutions of initial-boundary problem for $u_t=u_{x x}+1/(1-u)$,, Publ. Res. Inst. Math. Sci., 10 (1975), 729.  doi: 10.2977/prims/1195191889.  Google Scholar

[8]

P. Lin, Quenching time optimal control for some ordinary differential equations,, preprint, ().   Google Scholar

[9]

P. Lin and G. Wang, Blowup time optimal control for ordinary differential equations,, SIAM J. Control Optim., 49 (2011), 73.  doi: 10.1137/090764232.  Google Scholar

[10]

J. Warga, Optimal Control of Differential and Functional Equations,, Academic Press, (1972).   Google Scholar

[11]

B. Yordanov and Q. S. Zhang, Finite-time blowup for wave equations with a potential,, SIAM J. Math. Anal., 36 (2005), 1426.  doi: 10.1137/S0036141004440198.  Google Scholar

[12]

Z. Zhang and B. Hu, Rate estimates of gradient blowup for a heat equation with exponential nonlinearity,, Nonlinear Anal., 72 (2010), 4594.  doi: 10.1016/j.na.2010.02.036.  Google Scholar

show all references

References:
[1]

C. Bandle and H. Brunner, Blowup in diffusion equations: A survey,, J. Comput. Appl. Math., 97 (1998), 3.  doi: 10.1016/S0377-0427(98)00100-9.  Google Scholar

[2]

C. Y. Chan, New results in quenching,, in World Congress of Nonlinear Analysts '92, (1992), 427.   Google Scholar

[3]

C. Y. Chan and H. G. Kaper, Quenching for semilinear singular parabolic problems,, SIAM J. Math. Anal., 20 (1989), 558.  doi: 10.1137/0520039.  Google Scholar

[4]

M. Escobedo and M. A. Herrero, Boundedness and blow up for a semilinear reaction diffusion system,, J. Differential Equations, 89 (1991), 176.  doi: 10.1016/0022-0396(91)90118-S.  Google Scholar

[5]

R. Glassey, Blow-up theorems for nonlinear wave-equations,, Math. Z., 132 (1973), 183.  doi: 10.1007/BF01213863.  Google Scholar

[6]

J. S. Guo and B. Hu, The profile near quenching time for the solution of a singular semilinear heat equation,, Proc. Edinburgh Math. Soc., 40 (1997), 437.  doi: 10.1017/S0013091500023932.  Google Scholar

[7]

H. Kawarada, On solutions of initial-boundary problem for $u_t=u_{x x}+1/(1-u)$,, Publ. Res. Inst. Math. Sci., 10 (1975), 729.  doi: 10.2977/prims/1195191889.  Google Scholar

[8]

P. Lin, Quenching time optimal control for some ordinary differential equations,, preprint, ().   Google Scholar

[9]

P. Lin and G. Wang, Blowup time optimal control for ordinary differential equations,, SIAM J. Control Optim., 49 (2011), 73.  doi: 10.1137/090764232.  Google Scholar

[10]

J. Warga, Optimal Control of Differential and Functional Equations,, Academic Press, (1972).   Google Scholar

[11]

B. Yordanov and Q. S. Zhang, Finite-time blowup for wave equations with a potential,, SIAM J. Math. Anal., 36 (2005), 1426.  doi: 10.1137/S0036141004440198.  Google Scholar

[12]

Z. Zhang and B. Hu, Rate estimates of gradient blowup for a heat equation with exponential nonlinearity,, Nonlinear Anal., 72 (2010), 4594.  doi: 10.1016/j.na.2010.02.036.  Google Scholar

[1]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[2]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[3]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[4]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[5]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[6]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[7]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[8]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[9]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[10]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[11]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[12]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[13]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[14]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[15]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[16]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[17]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[18]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[19]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[20]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]