September  2014, 4(3): 381-399. doi: 10.3934/mcrf.2014.4.381

Approximations of infinite dimensional disturbance decoupling and almost disturbance decoupling problems

1. 

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China

Received  November 2013 Revised  February 2014 Published  April 2014

This paper is addressed to the disturbance decoupling and almost disturbance decoupling problems in infinite dimensions. We introduce a class of approximate finite dimensional systems, and show that if the systems are disturbance decoupled, so does the original infinite dimensional system. It is also shown that this approach can be employed to solve the almost disturbance decoupling problem. Finally, some illustrative examples are provided.
Citation: Xiuxiang Zhou. Approximations of infinite dimensional disturbance decoupling and almost disturbance decoupling problems. Mathematical Control & Related Fields, 2014, 4 (3) : 381-399. doi: 10.3934/mcrf.2014.4.381
References:
[1]

J. H. Bramble and V. Thomée, Discrete time Galerkin methods for a parabolic boundary value problem,, Ann. Mat. Pura Appl., 101 (1974), 115.  doi: 10.1007/BF02417101.  Google Scholar

[2]

R. F. Curtain, Disturbance decoupling by measurement feedback with stability for infinite dimensional systems,, Internat. J. Control, 43 (1986), 1723.  doi: 10.1080/00207178608933569.  Google Scholar

[3]

R. F. Curtain, Invariance concepts in infinite dimensions,, SIAM J. Control Optim., 24 (1986), 1009.  doi: 10.1137/0324059.  Google Scholar

[4]

R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems Theory,, Lecture Notes in Control and Information Sciences, (1978).   Google Scholar

[5]

R. E. Edwards, Fourier Series, a Modern Introduction, vol.II,, $2^{nd}$ edition, (1982).   Google Scholar

[6]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998).   Google Scholar

[7]

K. A. Morris and R. Rebarber, Feedback invariance of SISO infinite dimensional systems,, Math. Control Signals Systems, 19 (2007), 311.  doi: 10.1007/s00498-007-0021-9.  Google Scholar

[8]

L. Pandolfi, Disturbance decoupling and invariant subspaces for delay systems,, Appl. Math. Optim., 14 (1986), 55.  doi: 10.1007/BF01442228.  Google Scholar

[9]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[10]

E. J. P. G. Schmidt and R. J. Stern, Invariance theory for infinite dimensional linear control systems,, Appl. Math. Optim., 6 (1980), 113.  doi: 10.1007/BF01442887.  Google Scholar

[11]

J. M. Schumacher, A direct approach to compensator design for distributed parameter systems,, SIAM J. Control Optim., 21 (1983), 823.  doi: 10.1137/0321050.  Google Scholar

[12]

H. L. Trentelman, Almost Invariant Subspaces and High Gain Feedback,, Ph.D thesis, (1986).   Google Scholar

[13]

J. C. Willems, Almost invariant subspaces: An approach to high gain feedback design-part I: Almost controlled invariant subspaces,, IEEE Trans. Automat. Control, 26 (1981), 235.  doi: 10.1109/TAC.1981.1102551.  Google Scholar

[14]

J. L. Willems, Disturbance isolation in linear feedback systems,, Int. J. Syst. Sci., 6 (1975), 233.  doi: 10.1080/00207727508941812.  Google Scholar

[15]

W. M. Wonham, Linear Multivariable Control: A Geometric Approach,, $2^{nd}$ edition, (1979).   Google Scholar

[16]

H. J. Zwart, Geometric Theory for Infinite Dimensional Systems,, Lecture Notes in Control and Information Sciences, (1989).  doi: 10.1007/BFb0044353.  Google Scholar

[17]

H. J. Zwart, Equivalence between open-loop and closed-loop invariance for infinite-dimensional systems: a frequency domain approach,, SIAM J. Control Optim., 26 (1988), 1175.  doi: 10.1137/0326065.  Google Scholar

show all references

References:
[1]

J. H. Bramble and V. Thomée, Discrete time Galerkin methods for a parabolic boundary value problem,, Ann. Mat. Pura Appl., 101 (1974), 115.  doi: 10.1007/BF02417101.  Google Scholar

[2]

R. F. Curtain, Disturbance decoupling by measurement feedback with stability for infinite dimensional systems,, Internat. J. Control, 43 (1986), 1723.  doi: 10.1080/00207178608933569.  Google Scholar

[3]

R. F. Curtain, Invariance concepts in infinite dimensions,, SIAM J. Control Optim., 24 (1986), 1009.  doi: 10.1137/0324059.  Google Scholar

[4]

R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems Theory,, Lecture Notes in Control and Information Sciences, (1978).   Google Scholar

[5]

R. E. Edwards, Fourier Series, a Modern Introduction, vol.II,, $2^{nd}$ edition, (1982).   Google Scholar

[6]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998).   Google Scholar

[7]

K. A. Morris and R. Rebarber, Feedback invariance of SISO infinite dimensional systems,, Math. Control Signals Systems, 19 (2007), 311.  doi: 10.1007/s00498-007-0021-9.  Google Scholar

[8]

L. Pandolfi, Disturbance decoupling and invariant subspaces for delay systems,, Appl. Math. Optim., 14 (1986), 55.  doi: 10.1007/BF01442228.  Google Scholar

[9]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[10]

E. J. P. G. Schmidt and R. J. Stern, Invariance theory for infinite dimensional linear control systems,, Appl. Math. Optim., 6 (1980), 113.  doi: 10.1007/BF01442887.  Google Scholar

[11]

J. M. Schumacher, A direct approach to compensator design for distributed parameter systems,, SIAM J. Control Optim., 21 (1983), 823.  doi: 10.1137/0321050.  Google Scholar

[12]

H. L. Trentelman, Almost Invariant Subspaces and High Gain Feedback,, Ph.D thesis, (1986).   Google Scholar

[13]

J. C. Willems, Almost invariant subspaces: An approach to high gain feedback design-part I: Almost controlled invariant subspaces,, IEEE Trans. Automat. Control, 26 (1981), 235.  doi: 10.1109/TAC.1981.1102551.  Google Scholar

[14]

J. L. Willems, Disturbance isolation in linear feedback systems,, Int. J. Syst. Sci., 6 (1975), 233.  doi: 10.1080/00207727508941812.  Google Scholar

[15]

W. M. Wonham, Linear Multivariable Control: A Geometric Approach,, $2^{nd}$ edition, (1979).   Google Scholar

[16]

H. J. Zwart, Geometric Theory for Infinite Dimensional Systems,, Lecture Notes in Control and Information Sciences, (1989).  doi: 10.1007/BFb0044353.  Google Scholar

[17]

H. J. Zwart, Equivalence between open-loop and closed-loop invariance for infinite-dimensional systems: a frequency domain approach,, SIAM J. Control Optim., 26 (1988), 1175.  doi: 10.1137/0326065.  Google Scholar

[1]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[2]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[3]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[4]

Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052

[5]

Yongjie Wang, Nan Gao. Some properties for almost cellular algebras. Electronic Research Archive, 2021, 29 (1) : 1681-1689. doi: 10.3934/era.2020086

[6]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[7]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[8]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[9]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020409

[10]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[11]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[12]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[13]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[14]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[15]

Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311

[16]

Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029

[17]

Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[18]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[19]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[20]

Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021004

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]